Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52073
Título: | Model driven engineering for data miners simulation | Autores/as: | Évora Gómez, José Hernández Cabrera, José Juan Hernandez, Mario |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores | Palabras clave: | Complex systems Data miners Data mining Decision making Decision support systems, et al. |
Fecha de publicación: | 2013 | Proyectos: | Framework Para la Simulación de la Gestión de Mercado y Técnica de Redes Eléctricas Insulares Basado en Agentes Inteligentes. Caso de la Red Eléctrica de Gran Canaria. | Resumen: | Decision making processes in some contexts, such as construction of infrastructures, require the design of prospective experiments. These experiments are designed to test hypothesis raised in the design phase. Following an adaptive methodology, these experiments will feed new iterations. In many cases, the development of these experiments is so costly that they must be performed using simulators. In this paper, an approach for developing data mining simulators based on Model Driven Engineering is presented. These miners can be fed from data stores (i.e. multidimensional data stores) and may generate new data stores with the results they provide. This approach is intended to reduce the uncertainty at decision making as well as to speed up the iterative process. | URI: | http://hdl.handle.net/10553/52073 | ISBN: | 978-1-4799-3142-2 | ISSN: | 2375-9232 | DOI: | 10.1109/ICDMW.2013.141 | Fuente: | Proceedings - IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013 (6753944), p. 370-376 |
Colección: | Actas de congresos |
Visitas
99
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.