Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/51611
DC FieldValueLanguage
dc.contributor.authorPlaza, A.en_US
dc.contributor.authorRivara, M. C.en_US
dc.contributor.otherRivara, Maria Cecilia-
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:09:52Z-
dc.date.available2018-11-25T02:09:52Z-
dc.date.issued2005en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://hdl.handle.net/10553/51611-
dc.description.abstractFor any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions different values for the asymptotic number of average adjacencies are obtained depending on the considered partition, in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.sourceJournal of Computational and Applied Mathematics [ISSN 0377-0427], v. 177 (1), p. 141-158en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherAdjacenciesen_US
dc.subject.otherPartitionsen_US
dc.subject.otherTetrahedral meshesen_US
dc.titleAverage adjacencies for tetrahedral skeleton-regular partitionsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.cam.2004.09.013
dc.identifier.scopus12544259248-
dc.identifier.isi000226886000009-
dc.identifier.isi000226886000009-
dcterms.isPartOfJournal Of Computational And Applied Mathematics-
dcterms.sourceJournal Of Computational And Applied Mathematics[ISSN 0377-0427],v. 177 (1), p. 141-158-
dc.contributor.authorscopusid7006613647-
dc.contributor.authorscopusid6701685919-
dc.description.lastpage158-
dc.identifier.issue1-
dc.description.firstpage141-
dc.relation.volume177-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000226886000009-
dc.contributor.daisngid259483-
dc.contributor.daisngid1130808-
dc.identifier.investigatorRIDJ-3775-2016-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.externalWOS:000226886000009-
dc.contributor.wosstandardWOS:Plaza, A
dc.contributor.wosstandardWOS:Rivara, MC
dc.date.coverdateMayo 2005
dc.identifier.ulpgces
dc.description.jcr0,569
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

5
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

4
checked on Mar 30, 2025

Page view(s)

115
checked on Jan 4, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.