Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/51611
DC FieldValueLanguage
dc.contributor.authorPlaza, A.en_US
dc.contributor.authorRivara, M. C.en_US
dc.contributor.otherRivara, Maria Cecilia-
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:09:52Z-
dc.date.available2018-11-25T02:09:52Z-
dc.date.issued2005en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://hdl.handle.net/10553/51611-
dc.description.abstractFor any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions different values for the asymptotic number of average adjacencies are obtained depending on the considered partition, in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.sourceJournal of Computational and Applied Mathematics [ISSN 0377-0427], v. 177 (1), p. 141-158en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherAdjacenciesen_US
dc.subject.otherPartitionsen_US
dc.subject.otherTetrahedral meshesen_US
dc.titleAverage adjacencies for tetrahedral skeleton-regular partitionsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.cam.2004.09.013
dc.identifier.scopus12544259248-
dc.identifier.isi000226886000009-
dc.identifier.isi000226886000009-
dcterms.isPartOfJournal Of Computational And Applied Mathematics-
dcterms.sourceJournal Of Computational And Applied Mathematics[ISSN 0377-0427],v. 177 (1), p. 141-158-
dc.contributor.authorscopusid7006613647-
dc.contributor.authorscopusid6701685919-
dc.description.lastpage158-
dc.identifier.issue1-
dc.description.firstpage141-
dc.relation.volume177-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000226886000009-
dc.contributor.daisngid259483-
dc.contributor.daisngid1130808-
dc.identifier.investigatorRIDJ-3775-2016-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.externalWOS:000226886000009-
dc.contributor.wosstandardWOS:Plaza, A
dc.contributor.wosstandardWOS:Rivara, MC
dc.date.coverdateMayo 2005
dc.identifier.ulpgces
dc.description.jcr0,569
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.