Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51611
Título: Average adjacencies for tetrahedral skeleton-regular partitions
Autores/as: Plaza, A. 
Rivara, M. C.
Clasificación UNESCO: 120601 Construcción de algoritmos
Palabras clave: Adjacencies
Partitions
Tetrahedral meshes
Fecha de publicación: 2005
Publicación seriada: Journal of Computational and Applied Mathematics 
Resumen: For any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions different values for the asymptotic number of average adjacencies are obtained depending on the considered partition, in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided.
URI: http://hdl.handle.net/10553/51611
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.09.013
Fuente: Journal of Computational and Applied Mathematics [ISSN 0377-0427], v. 177 (1), p. 141-158
Colección:Artículos
Vista completa

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

110
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.