Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51604
Campo DC Valoridioma
dc.contributor.authorPerdomo, Francisco-
dc.contributor.authorPlaza, Ángel-
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:06:03Z-
dc.date.available2018-11-25T02:06:03Z-
dc.date.issued2015-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://hdl.handle.net/10553/51604-
dc.description.abstract© 2015 Elsevier Inc. In the article [Applied Mathematics and Computation 219 (4) (2012) 2342-2344] there exists a minor error in the case n = 4. We correct the error and give a proof for the case n = 4. The argument in reference [1] used that “Since [Formula prsented] then [Formula prsented]”. It should be noted that the later inequality does not hold. Notice that [Formula prsented]. So, if [Formula prsented] then [Formula prsented]. Even though, the subsequent argument in [1] is correct for the case n > 4. But, the case n = 4 needs a closer look. Let us consider the semi-circle passing through point z and tangent to the real axis at point z = 1/2, see Fig. 1. Let r be the radius of the circle, so its center is at point [Formula prsented]. Then the equation of the circle is [Formula prsented] that is [Formula prsented]. Now, using that [Formula prsented] it follows[Formula prsented] This circle is invariant under the action of the Moebius transform [Formula prsented]: If we change [Formula prsented] in Eq. (1), it is obtained: [Formula prsented]where after clearing denominators we have [Formula prsented] The Moebius transform [Formula prsented] has a unique fixed point, [Formula prsented]. The sequence {z, w(z), w 2 (z), …} is on the semicircle and {Im z, Im w(z), Im w 2 (z), …} is decreasing. Hence it has an accumulation point which corresponds to the fixed point [Formula prsented]. This completes the argument of the paper [1] for the case n = 4.
dc.languageeng-
dc.relation.ispartofApplied Mathematics and Computation-
dc.sourceApplied Mathematics And Computation [ISSN 0096-3003], v. 260, p. 412-413-
dc.subject120603 Análisis de errores-
dc.titleCorrigendum to A new proof of the degeneracy property of the longest-edge n-section refinement scheme for triangular meshes [Applied Mathematics and Computation 219 (4) (2012) 2342-2344]-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.amc.2015.03.083
dc.identifier.scopus84927144891-
dc.identifier.isi000354187700035-
dcterms.isPartOfApplied Mathematics And Computation-
dcterms.sourceApplied Mathematics And Computation [ISSN 0096-3003], v. 260, p. 412-413-
dc.contributor.authorscopusid55348970700-
dc.contributor.authorscopusid7006613647-
dc.description.lastpage213-
dc.description.firstpage212-
dc.relation.volume260-
dc.investigacionCiencias-
dc.type2Artículo-
dc.identifier.wosWOS:000354187700035-
dc.contributor.daisngid2597710-
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.externalWOS:000354187700035-
dc.identifier.externalWOS:000354187700035-
dc.identifier.externalWOS:000354187700035-
dc.identifier.externalWOS:000354187700035-
dc.contributor.wosstandardWOS:Perdomo, F
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateJunio 2015
dc.identifier.ulpgces
dc.description.sjr0,958
dc.description.jcr1,345
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Colección:Artículos
Vista resumida

Visitas

102
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.