Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/51604
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Perdomo, Francisco | - |
dc.contributor.author | Plaza, Ángel | - |
dc.contributor.other | PLAZA, ANGEL | - |
dc.date.accessioned | 2018-11-25T02:06:03Z | - |
dc.date.available | 2018-11-25T02:06:03Z | - |
dc.date.issued | 2015 | - |
dc.identifier.issn | 0096-3003 | - |
dc.identifier.uri | http://hdl.handle.net/10553/51604 | - |
dc.description.abstract | © 2015 Elsevier Inc. In the article [Applied Mathematics and Computation 219 (4) (2012) 2342-2344] there exists a minor error in the case n = 4. We correct the error and give a proof for the case n = 4. The argument in reference [1] used that “Since [Formula prsented] then [Formula prsented]”. It should be noted that the later inequality does not hold. Notice that [Formula prsented]. So, if [Formula prsented] then [Formula prsented]. Even though, the subsequent argument in [1] is correct for the case n > 4. But, the case n = 4 needs a closer look. Let us consider the semi-circle passing through point z and tangent to the real axis at point z = 1/2, see Fig. 1. Let r be the radius of the circle, so its center is at point [Formula prsented]. Then the equation of the circle is [Formula prsented] that is [Formula prsented]. Now, using that [Formula prsented] it follows[Formula prsented] This circle is invariant under the action of the Moebius transform [Formula prsented]: If we change [Formula prsented] in Eq. (1), it is obtained: [Formula prsented]where after clearing denominators we have [Formula prsented] The Moebius transform [Formula prsented] has a unique fixed point, [Formula prsented]. The sequence {z, w(z), w 2 (z), …} is on the semicircle and {Im z, Im w(z), Im w 2 (z), …} is decreasing. Hence it has an accumulation point which corresponds to the fixed point [Formula prsented]. This completes the argument of the paper [1] for the case n = 4. | |
dc.language | eng | - |
dc.relation.ispartof | Applied Mathematics and Computation | - |
dc.source | Applied Mathematics And Computation [ISSN 0096-3003], v. 260, p. 412-413 | - |
dc.subject | 120603 Análisis de errores | - |
dc.title | Corrigendum to A new proof of the degeneracy property of the longest-edge n-section refinement scheme for triangular meshes [Applied Mathematics and Computation 219 (4) (2012) 2342-2344] | - |
dc.type | info:eu-repo/semantics/Article | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.amc.2015.03.083 | |
dc.identifier.scopus | 84927144891 | - |
dc.identifier.isi | 000354187700035 | - |
dcterms.isPartOf | Applied Mathematics And Computation | - |
dcterms.source | Applied Mathematics And Computation [ISSN 0096-3003], v. 260, p. 412-413 | - |
dc.contributor.authorscopusid | 55348970700 | - |
dc.contributor.authorscopusid | 7006613647 | - |
dc.description.lastpage | 213 | - |
dc.description.firstpage | 212 | - |
dc.relation.volume | 260 | - |
dc.investigacion | Ciencias | - |
dc.type2 | Artículo | - |
dc.identifier.wos | WOS:000354187700035 | - |
dc.contributor.daisngid | 2597710 | - |
dc.contributor.daisngid | 259483 | - |
dc.identifier.investigatorRID | A-8210-2008 | - |
dc.identifier.external | WOS:000354187700035 | - |
dc.identifier.external | WOS:000354187700035 | - |
dc.identifier.external | WOS:000354187700035 | - |
dc.identifier.external | WOS:000354187700035 | - |
dc.contributor.wosstandard | WOS:Perdomo, F | |
dc.contributor.wosstandard | WOS:Plaza, A | |
dc.date.coverdate | Junio 2015 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,958 | |
dc.description.jcr | 1,345 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUMA: Matemáticas, Gráficos y Computación | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0002-5077-6531 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Perdomo Peña, Francisco | - |
crisitem.author.fullName | Plaza De La Hoz, Ángel | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.