Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51604
DC FieldValueLanguage
dc.contributor.authorPerdomo, Francisco-
dc.contributor.authorPlaza, Ángel-
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:06:03Z-
dc.date.available2018-11-25T02:06:03Z-
dc.date.issued2015-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://hdl.handle.net/10553/51604-
dc.description.abstract© 2015 Elsevier Inc. In the article [Applied Mathematics and Computation 219 (4) (2012) 2342-2344] there exists a minor error in the case n = 4. We correct the error and give a proof for the case n = 4. The argument in reference [1] used that “Since [Formula prsented] then [Formula prsented]”. It should be noted that the later inequality does not hold. Notice that [Formula prsented]. So, if [Formula prsented] then [Formula prsented]. Even though, the subsequent argument in [1] is correct for the case n > 4. But, the case n = 4 needs a closer look. Let us consider the semi-circle passing through point z and tangent to the real axis at point z = 1/2, see Fig. 1. Let r be the radius of the circle, so its center is at point [Formula prsented]. Then the equation of the circle is [Formula prsented] that is [Formula prsented]. Now, using that [Formula prsented] it follows[Formula prsented] This circle is invariant under the action of the Moebius transform [Formula prsented]: If we change [Formula prsented] in Eq. (1), it is obtained: [Formula prsented]where after clearing denominators we have [Formula prsented] The Moebius transform [Formula prsented] has a unique fixed point, [Formula prsented]. The sequence {z, w(z), w 2 (z), …} is on the semicircle and {Im z, Im w(z), Im w 2 (z), …} is decreasing. Hence it has an accumulation point which corresponds to the fixed point [Formula prsented]. This completes the argument of the paper [1] for the case n = 4.
dc.languageeng-
dc.relation.ispartofApplied Mathematics and Computation-
dc.sourceApplied Mathematics And Computation [ISSN 0096-3003], v. 260, p. 412-413-
dc.subject120603 Análisis de errores-
dc.titleCorrigendum to A new proof of the degeneracy property of the longest-edge n-section refinement scheme for triangular meshes [Applied Mathematics and Computation 219 (4) (2012) 2342-2344]-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.amc.2015.03.083
dc.identifier.scopus84927144891-
dc.identifier.isi000354187700035-
dcterms.isPartOfApplied Mathematics And Computation-
dcterms.sourceApplied Mathematics And Computation [ISSN 0096-3003], v. 260, p. 412-413-
dc.contributor.authorscopusid55348970700-
dc.contributor.authorscopusid7006613647-
dc.description.lastpage213-
dc.description.firstpage212-
dc.relation.volume260-
dc.investigacionCiencias-
dc.type2Artículo-
dc.identifier.wosWOS:000354187700035-
dc.contributor.daisngid2597710-
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.externalWOS:000354187700035-
dc.identifier.externalWOS:000354187700035-
dc.identifier.externalWOS:000354187700035-
dc.identifier.externalWOS:000354187700035-
dc.contributor.wosstandardWOS:Perdomo, F
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateJunio 2015
dc.identifier.ulpgces
dc.description.sjr0,958
dc.description.jcr1,345
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

Page view(s)

102
checked on Nov 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.