Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/50294
Título: | Evaluation of deep feedforward neural networks for classification of diffuse lung diseases | Autores/as: | Cardoso, Isadora Almeida, Eliana Allende-Cid, Héctor Frery, Alejandro C. Rangayyan, Rangaraj M. Azevedo-Marques, Paulo M. Ramos, Heitor S. |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Computer-Aided Diagnosis Deep Feedforward Neural Network Deep Learning Diffuse Lung Diseases Machine Learning |
Fecha de publicación: | 2018 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 22nd Iberoamerican Congress on Pattern Recognition (CIARP 2017) | Resumen: | Diffuse Lung Diseases (DLDs) are a challenge for physicians due their wide variety. Computer-Aided Diagnosis (CAD) are systems able to help physicians in their diagnoses combining information provided by experts with Machine Learning (ML) methods. Among ML techniques, Deep Learning has recently established itself as one of the preferred methods with state-of-the-art performance in several fields. In this paper, we analyze the discriminatory power of Deep Feedforward Neural Networks (DFNN) when applied to DLDs. We classify six radiographic patterns related with DLDs: pulmonary consolidation, emphysematous areas, septal thickening, honeycomb, ground-glass opacities, and normal lung tissues. We analyze DFNN and other ML methods to compare their performance. The obtained results show the high performance obtained by DFNN method, with an overall accuracy of 99.60%, about 10% higher than the other studied ML methods. | URI: | http://hdl.handle.net/10553/50294 | ISBN: | 978-3-319-75192-4 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-75193-1_19 | Fuente: | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2017. Lecture Notes in Computer Science, v. 10657 LNCS, p. 152-159 |
Colección: | Capítulo de libro |
Citas SCOPUSTM
3
actualizado el 24-nov-2024
Visitas
57
actualizado el 13-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.