Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50294
Título: Evaluation of deep feedforward neural networks for classification of diffuse lung diseases
Autores/as: Cardoso, Isadora
Almeida, Eliana
Allende-Cid, Héctor
Frery, Alejandro C. 
Rangayyan, Rangaraj M.
Azevedo-Marques, Paulo M.
Ramos, Heitor S.
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Computer-Aided Diagnosis
Deep Feedforward Neural Network
Deep Learning
Diffuse Lung Diseases
Machine Learning
Fecha de publicación: 2018
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 22nd Iberoamerican Congress on Pattern Recognition (CIARP 2017) 
Resumen: Diffuse Lung Diseases (DLDs) are a challenge for physicians due their wide variety. Computer-Aided Diagnosis (CAD) are systems able to help physicians in their diagnoses combining information provided by experts with Machine Learning (ML) methods. Among ML techniques, Deep Learning has recently established itself as one of the preferred methods with state-of-the-art performance in several fields. In this paper, we analyze the discriminatory power of Deep Feedforward Neural Networks (DFNN) when applied to DLDs. We classify six radiographic patterns related with DLDs: pulmonary consolidation, emphysematous areas, septal thickening, honeycomb, ground-glass opacities, and normal lung tissues. We analyze DFNN and other ML methods to compare their performance. The obtained results show the high performance obtained by DFNN method, with an overall accuracy of 99.60%, about 10% higher than the other studied ML methods.
URI: http://hdl.handle.net/10553/50294
ISBN: 978-3-319-75192-4
ISSN: 0302-9743
DOI: 10.1007/978-3-319-75193-1_19
Fuente: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2017. Lecture Notes in Computer Science, v. 10657 LNCS, p. 152-159
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

3
actualizado el 24-nov-2024

Visitas

57
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.