Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50294
Campo DC Valoridioma
dc.contributor.authorCardoso, Isadoraen_US
dc.contributor.authorAlmeida, Elianaen_US
dc.contributor.authorAllende-Cid, Héctoren_US
dc.contributor.authorFrery, Alejandro C.en_US
dc.contributor.authorRangayyan, Rangaraj M.en_US
dc.contributor.authorAzevedo-Marques, Paulo M.en_US
dc.contributor.authorRamos, Heitor S.en_US
dc.date.accessioned2018-11-24T14:56:03Z-
dc.date.available2018-11-24T14:56:03Z-
dc.date.issued2018en_US
dc.identifier.isbn978-3-319-75192-4en_US
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/10553/50294-
dc.description.abstractDiffuse Lung Diseases (DLDs) are a challenge for physicians due their wide variety. Computer-Aided Diagnosis (CAD) are systems able to help physicians in their diagnoses combining information provided by experts with Machine Learning (ML) methods. Among ML techniques, Deep Learning has recently established itself as one of the preferred methods with state-of-the-art performance in several fields. In this paper, we analyze the discriminatory power of Deep Feedforward Neural Networks (DFNN) when applied to DLDs. We classify six radiographic patterns related with DLDs: pulmonary consolidation, emphysematous areas, septal thickening, honeycomb, ground-glass opacities, and normal lung tissues. We analyze DFNN and other ML methods to compare their performance. The obtained results show the high performance obtained by DFNN method, with an overall accuracy of 99.60%, about 10% higher than the other studied ML methods.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Science-
dc.sourceProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2017. Lecture Notes in Computer Science, v. 10657 LNCS, p. 152-159en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherComputer-Aided Diagnosisen_US
dc.subject.otherDeep Feedforward Neural Networken_US
dc.subject.otherDeep Learningen_US
dc.subject.otherDiffuse Lung Diseasesen_US
dc.subject.otherMachine Learningen_US
dc.titleEvaluation of deep feedforward neural networks for classification of diffuse lung diseasesen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBook parten_US
dc.relation.conference22nd Iberoamerican Congress on Pattern Recognition (CIARP 2017)en_US
dc.identifier.doi10.1007/978-3-319-75193-1_19en_US
dc.identifier.scopus85042208941-
dc.contributor.authorscopusid57191339334-
dc.contributor.authorscopusid8295156100-
dc.contributor.authorscopusid23472255600-
dc.contributor.authorscopusid7003561251-
dc.contributor.authorscopusid7005319550-
dc.contributor.authorscopusid8300658600-
dc.contributor.authorscopusid25655377800-
dc.description.lastpage159en_US
dc.description.firstpage152en_US
dc.relation.volume10657 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.identifier.eisbn978-3-319-75192-4-
dc.utils.revisionen_US
dc.identifier.supplement0302-9743-
dc.identifier.ulpgcNoen_US
dc.identifier.ulpgcNoen_US
dc.description.sjr0,283
dc.description.sjrqQ2
dc.description.spiqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate07-11-2017-
crisitem.event.eventsenddate10-11-2017-
crisitem.author.orcid0000-0002-8002-5341-
crisitem.author.fullNameC. Frery, Alejandro-
Colección:Capítulo de libro
Vista resumida

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Visitas

57
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.