Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/50293
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Barros, Pedro | en_US |
dc.contributor.author | Cardoso-Pereira, Isadora | en_US |
dc.contributor.author | Barbosa, Keila | en_US |
dc.contributor.author | Frery, Alejandro C. | en_US |
dc.contributor.author | Allende-Cid, Héctor | en_US |
dc.contributor.author | Martins, Ivan | en_US |
dc.contributor.author | Ramos, Heitor S. | en_US |
dc.date.accessioned | 2018-11-24T14:55:37Z | - |
dc.date.available | 2018-11-24T14:55:37Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.isbn | 978-3-319-91484-8 | en_US |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | http://hdl.handle.net/10553/50293 | - |
dc.description.abstract | This work aims at analyzing twitter data to identify communities of Brazilian Senators. To do so, we collected data from 76 Brazilian Senators and used autoencoder and bi-gram to the content of tweets to find similar subjects and hence cluster the senators into groups. Thereafter, we applied an unsupervised sentiment analysis to identify the communities of senators that share similar sentiments about a selected number of relevant topics. We find that is able to create meaningful clusters of tweets of similar contents. We found 13 topics all of them relevant to the current Brazilian political scenario. The unsupervised sentiment analysis shows that, as a result of the complex political system (with multiple parties), many senators were identified as independent (19) and only one (out of 11) community can be classified as a community of senators that support the current government. All other detected communities are not relevant. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | - |
dc.source | Social Computing and Social Media. Technologies and Analytics. SCSM 2018. Lecture Notes in Computer Science, v. 10914 LNCS, p. 171-182 | en_US |
dc.subject | 3325 Tecnología de las telecomunicaciones | en_US |
dc.subject.other | Community detection | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Text classification | en_US |
dc.subject.other | Convolutional networks | en_US |
dc.subject.other | Autoencoder | en_US |
dc.title | Identifying communities in social media with deep learning | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | Book part | en_US |
dc.relation.conference | 10th International Conference on Social Computing and Social Media (SCSM 2018) | - |
dc.identifier.doi | 10.1007/978-3-319-91485-5_13 | en_US |
dc.identifier.scopus | 85050549337 | - |
dc.contributor.authorscopusid | 57202819125 | - |
dc.contributor.authorscopusid | 57203120086 | - |
dc.contributor.authorscopusid | 57203120318 | - |
dc.contributor.authorscopusid | 7003561251 | - |
dc.contributor.authorscopusid | 23472255600 | - |
dc.contributor.authorscopusid | 57203119108 | - |
dc.contributor.authorscopusid | 25655377800 | - |
dc.description.lastpage | 182 | en_US |
dc.description.firstpage | 171 | en_US |
dc.relation.volume | 10914 LNCS | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.identifier.eisbn | 978-3-319-91485-5 | - |
dc.utils.revision | Sí | en_US |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.ulpgc | No | en_US |
dc.identifier.ulpgc | No | en_US |
dc.identifier.ulpgc | No | en_US |
dc.identifier.ulpgc | No | en_US |
dc.description.sjr | 0,283 | |
dc.description.sjrq | Q2 | |
dc.description.spiq | Q1 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 15-07-2018 | - |
crisitem.event.eventsenddate | 20-07-2018 | - |
crisitem.author.orcid | 0000-0002-8002-5341 | - |
crisitem.author.fullName | C. Frery, Alejandro | - |
Colección: | Capítulo de libro |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
38
actualizado el 30-sep-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.