Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/50293
DC FieldValueLanguage
dc.contributor.authorBarros, Pedroen_US
dc.contributor.authorCardoso-Pereira, Isadoraen_US
dc.contributor.authorBarbosa, Keilaen_US
dc.contributor.authorFrery, Alejandro C.en_US
dc.contributor.authorAllende-Cid, Héctoren_US
dc.contributor.authorMartins, Ivanen_US
dc.contributor.authorRamos, Heitor S.en_US
dc.date.accessioned2018-11-24T14:55:37Z-
dc.date.available2018-11-24T14:55:37Z-
dc.date.issued2018en_US
dc.identifier.isbn978-3-319-91484-8en_US
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/10553/50293-
dc.description.abstractThis work aims at analyzing twitter data to identify communities of Brazilian Senators. To do so, we collected data from 76 Brazilian Senators and used autoencoder and bi-gram to the content of tweets to find similar subjects and hence cluster the senators into groups. Thereafter, we applied an unsupervised sentiment analysis to identify the communities of senators that share similar sentiments about a selected number of relevant topics. We find that is able to create meaningful clusters of tweets of similar contents. We found 13 topics all of them relevant to the current Brazilian political scenario. The unsupervised sentiment analysis shows that, as a result of the complex political system (with multiple parties), many senators were identified as independent (19) and only one (out of 11) community can be classified as a community of senators that support the current government. All other detected communities are not relevant.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Science-
dc.sourceSocial Computing and Social Media. Technologies and Analytics. SCSM 2018. Lecture Notes in Computer Science, v. 10914 LNCS, p. 171-182en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherCommunity detectionen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherText classificationen_US
dc.subject.otherConvolutional networksen_US
dc.subject.otherAutoencoderen_US
dc.titleIdentifying communities in social media with deep learningen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBook parten_US
dc.relation.conference10th International Conference on Social Computing and Social Media (SCSM 2018)-
dc.identifier.doi10.1007/978-3-319-91485-5_13en_US
dc.identifier.scopus85050549337-
dc.contributor.authorscopusid57202819125-
dc.contributor.authorscopusid57203120086-
dc.contributor.authorscopusid57203120318-
dc.contributor.authorscopusid7003561251-
dc.contributor.authorscopusid23472255600-
dc.contributor.authorscopusid57203119108-
dc.contributor.authorscopusid25655377800-
dc.description.lastpage182en_US
dc.description.firstpage171en_US
dc.relation.volume10914 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.identifier.eisbn978-3-319-91485-5-
dc.utils.revisionen_US
dc.identifier.supplement0302-9743-
dc.identifier.supplement0302-9743-
dc.identifier.supplement0302-9743-
dc.identifier.ulpgcNoen_US
dc.identifier.ulpgcNoen_US
dc.identifier.ulpgcNoen_US
dc.identifier.ulpgcNoen_US
dc.description.sjr0,283
dc.description.sjrqQ2
dc.description.spiqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.orcid0000-0002-8002-5341-
crisitem.author.fullNameC. Frery, Alejandro-
crisitem.event.eventsstartdate15-07-2018-
crisitem.event.eventsenddate20-07-2018-
Appears in Collections:Capítulo de libro
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

38
checked on Sep 30, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.