Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50289
Campo DC Valoridioma
dc.contributor.authorNegri, Rogério G.en_US
dc.contributor.authorFrery, Alejandro C.en_US
dc.contributor.authorSilva, Wagner B.en_US
dc.contributor.authorMendes, Tatiana S.G.en_US
dc.contributor.authorDutra, Luciano V.en_US
dc.date.accessioned2018-11-24T14:53:46Z-
dc.date.available2018-11-24T14:53:46Z-
dc.date.issued2019en_US
dc.identifier.issn1753-8947en_US
dc.identifier.urihttp://hdl.handle.net/10553/50289-
dc.description.abstractRegion-based classification of PolSAR data can be effectively performed by seeking for the assignment that minimizes a distance between prototypes and segments. Silva et al. [“Classification of segments in PolSAR imagery by minimum stochastic distances between wishart distributions.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (3): 1263–1273] used stochastic distances between complex multivariate Wishart models which, differently from other measures, are computationally tractable. In this work we assess the robustness of such approach with respect to errors in the training stage, and propose an extension that alleviates such problems. We introduce robustness in the process by incorporating a combination of radial basis kernel functions and stochastic distances with Support Vector Machines (SVM). We consider several stochastic distances between Wishart: Bhatacharyya, Kullback-Leibler, Chi-Square, Rényi, and Hellinger. We perform two case studies with PolSAR images, both simulated and from actual sensors, and different classification scenarios to compare the performance of Minimum Distance and SVM classification frameworks. With this, we model the situation of imperfect training samples. We show that SVM with the proposed kernel functions achieves better performance with respect to Minimum Distance, at the expense of more computational resources and the need of parameter tuning. Code and data are provided for reproducibility.en_US
dc.languageengen_US
dc.publisher1753-8947
dc.relation.ispartofInternational Journal of Digital Earthen_US
dc.sourceInternational Journal of Digital Earth[ISSN 1753-8947], v. 12(6), p. 699-719en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherPolSARen_US
dc.subject.otherImage classificationen_US
dc.subject.otherStochastic distanceen_US
dc.subject.otherMinimum distance classifieren_US
dc.subject.otherSVMen_US
dc.titleRegion-based classification of PolSAR data using radial basis kernel functions with stochastic distancesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/17538947.2018.1474958en_US
dc.identifier.scopus85047938894-
dc.contributor.authorscopusid54409218100-
dc.contributor.authorscopusid7003561251-
dc.contributor.authorscopusid54409538600-
dc.contributor.authorscopusid36632800200-
dc.contributor.authorscopusid7003588936-
dc.description.lastpage21en_US
dc.description.firstpage1en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,084
dc.description.jcr3,097
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.erihplusERIH PLUS
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.orcid0000-0002-8002-5341-
crisitem.author.fullNameC. Frery, Alejandro-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.