Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/50289
Título: | Region-based classification of PolSAR data using radial basis kernel functions with stochastic distances | Autores/as: | Negri, Rogério G. Frery, Alejandro C. Silva, Wagner B. Mendes, Tatiana S.G. Dutra, Luciano V. |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | PolSAR Image classification Stochastic distance Minimum distance classifier SVM |
Fecha de publicación: | 2019 | Editor/a: | 1753-8947 | Publicación seriada: | International Journal of Digital Earth | Resumen: | Region-based classification of PolSAR data can be effectively performed by seeking for the assignment that minimizes a distance between prototypes and segments. Silva et al. [“Classification of segments in PolSAR imagery by minimum stochastic distances between wishart distributions.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (3): 1263–1273] used stochastic distances between complex multivariate Wishart models which, differently from other measures, are computationally tractable. In this work we assess the robustness of such approach with respect to errors in the training stage, and propose an extension that alleviates such problems. We introduce robustness in the process by incorporating a combination of radial basis kernel functions and stochastic distances with Support Vector Machines (SVM). We consider several stochastic distances between Wishart: Bhatacharyya, Kullback-Leibler, Chi-Square, Rényi, and Hellinger. We perform two case studies with PolSAR images, both simulated and from actual sensors, and different classification scenarios to compare the performance of Minimum Distance and SVM classification frameworks. With this, we model the situation of imperfect training samples. We show that SVM with the proposed kernel functions achieves better performance with respect to Minimum Distance, at the expense of more computational resources and the need of parameter tuning. Code and data are provided for reproducibility. | URI: | http://hdl.handle.net/10553/50289 | ISSN: | 1753-8947 | DOI: | 10.1080/17538947.2018.1474958 | Fuente: | International Journal of Digital Earth[ISSN 1753-8947], v. 12(6), p. 699-719 |
Colección: | Artículos |
Citas SCOPUSTM
11
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
9
actualizado el 17-nov-2024
Visitas
68
actualizado el 26-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.