Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50286
Campo DC Valoridioma
dc.contributor.authorNascimento, Abraao D.C.en_US
dc.contributor.authorFrery, Alejandro C.en_US
dc.contributor.authorCintra, Renato J.en_US
dc.date.accessioned2018-11-24T14:52:24Z-
dc.date.available2018-11-24T14:52:24Z-
dc.date.issued2019en_US
dc.identifier.issn0196-2892en_US
dc.identifier.urihttp://hdl.handle.net/10553/50286-
dc.description.abstractImages obtained from coherent illumination processes are contaminated with speckle. A prominent example of such imagery systems is the polarimetric synthetic aperture radar (PolSAR). For such a remote sensing tool, the speckle interference pattern appears in the form of a positive-definite Hermitian matrix, which requires specialized models and makes change detection a hard task. The scaled complex Wishart distribution is a widely used model for PolSAR images. Such a distribution is defined by two parameters: the number of looks and the complex covariance matrix. The last parameter contains all the necessary information to characterize the backscattered data, and thus, identifying changes in a sequence of images can be formulated as a problem of verifying whether the complex covariance matrices differ at two or more takes. This paper proposes a comparison between a classical change detection method based on the likelihood ratio and three statistical methods that depend on information-theoretic measures: the Kullback-Leibler (KL) distance and two entropies. The performance of these four tests was quantified in terms of their sample test powers and sizes using simulated data. The tests are then applied to actual PolSAR data. The results provide evidence that tests based on entropies may outperform those based on the KL distance and likelihood ratio statistics.en_US
dc.languageengen_US
dc.publisher0196-2892
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensingen_US
dc.sourceIEEE Transactions on Geoscience and Remote Sensing [ISSN 0196-2892], v. 57(3), p. 1380-1392en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherChange detectionen_US
dc.subject.otherContrasten_US
dc.subject.otherHypothesis testen_US
dc.subject.otherInformation theoryen_US
dc.subject.otherWisharten_US
dc.titleDetecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theoryen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TGRS.2018.2866367en_US
dc.identifier.scopus85053294208-
dc.contributor.authorscopusid35264620800-
dc.contributor.authorscopusid7003561251-
dc.contributor.authorscopusid55930266600-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr2,616
dc.description.jcr5,855
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.orcid0000-0002-8002-5341-
crisitem.author.fullNameC. Frery, Alejandro-
Colección:Artículos
miniatura
Adobe PDF (7,83 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.