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Detecting Changes in Fully Polarimetric SAR
Imagery With Statistical Information Theory
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Abstract— Images obtained from coherent illumination
processes are contaminated with speckle. A prominent example of
such imagery systems is the polarimetric synthetic aperture radar
(PolSAR). For such a remote sensing tool, the speckle interference
pattern appears in the form of a positive-definite Hermitian
matrix, which requires specialized models and makes change
detection a hard task. The scaled complex Wishart distribution
is a widely used model for PolSAR images. Such a distribution is
defined by two parameters: the number of looks and the complex
covariance matrix. The last parameter contains all the necessary
information to characterize the backscattered data, and thus,
identifying changes in a sequence of images can be formulated
as a problem of verifying whether the complex covariance
matrices differ at two or more takes. This paper proposes a
comparison between a classical change detection method based
on the likelihood ratio and three statistical methods that depend
on information-theoretic measures: the Kullback–Leibler (KL)
distance and two entropies. The performance of these four tests
was quantified in terms of their sample test powers and sizes
using simulated data. The tests are then applied to actual PolSAR
data. The results provide evidence that tests based on entropies
may outperform those based on the KL distance and likelihood
ratio statistics.

Index Terms— Change detection, contrast, hypothesis test,
information theory, Wishart.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has been widely used as
an important system for information extraction in remote

sensing applications. Such microwave active sensors have as
main advantages the following features: 1) their operation is
not determined by day time, neither weather conditions and
2) they are capable of providing high spatial image resolution.
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In recent years, the interest in understanding such a type
of imagery in a multidimensional and multilook perspective
has increased. Such systems are called “polarimetric SAR”
(PolSAR). In this case, obtaining of PolSAR data obeys
the following dynamic: a scene is mapped with polarized
pulses that are backscattered by the scene and captured by a
sensor to form an image. As a result, PolSAR measurements
record the amplitude and phase of backscattered signals for
possible combinations of linear reception and transmission
polarizations: HH, HV, VH, and VV (H for horizontal and
V for vertical polarization).

However, since the acquired images stem from a coherent
illumination process, they are affected by a signal-dependent
granular noise called “speckle” [1]. Such a noise has a multi-
plicative nature and its intensity does not follow the Gaussian
law. Thus, analyzing PolSAR images requires tailored image
processing based on the statistical properties of speckled data.

The PolSAR theory prescribes that the returned (backscat-
tered) signal of distributed targets is adequately represented by
its complex covariance matrix. Under the assumption that the
complex scattering coefficients are jointly circular Gaussian,
the Wishart distribution is the statistical model for multilook
PolSAR data. This paper adopts the assumption that a PolSAR
image is well described by such a distribution.

Change detection methods aim at identifying differences
in the scene configuration at distinct observation instants.
Such procedures have achieved a prominent position in recent
decades [2]. Indeed, literature reports several approaches for
change detection problems, among them:

1) image ratioing [3]–[6];
2) multitemporal coherence analysis [7];
3) spatiotemporal contextual classification [8], [9];
4) Hotelling–Lawley and likelihood ratio tests [10]–[19]

and robust tests [20];
5) combination of image rationing and the generalized

minimum-error method [21];
6) detection algorithms based on Lagrange optimiza-

tion [22];
7) information-theoretic measures for change detection [9],

[23]–[30];
8) change detection with postclassification [31].

This paper advances points 4) and 7) above.
The change detection process is theoretically rooted in the

hypothesis test theory and the proposal of statistical similarity
measures [32]. In particular, hypothesis tests based on the
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complex covariance matrix have been sought for PolSAR data
analysis. Many statistical approaches have been developed in
order to reach this goal.

Conradsen et al. [11] proposed a methodology based
on the likelihood ratio test defined by two random sam-
ples from the complex Wishart distribution. Subsequently,
this technique was applied to edge detection in PolSAR
images by Schou et al. [33]. Recently, Conradsen et al. [19]
extended likelihood-based detection for PolSAR time series.
Kersten et al. [34] compared three test statistics (the contrast
ratio, ellipticity, and Bartlett tests). It was found that the
method based on the contrast ratio is more robust to variations
in the covariance estimates on actual data. In a complementary
study, Molinier and Rauste [35] compared six polarimetric
change detection methods. As a conclusion, the methods
directly derived from the Wishart distribution outperformed
other approaches as they provide explicit thresholds. Recently,
Akbari et al. [36] proposed a change detector involving the
Hotelling–Lawley trace (HLT), which, asymptotically, follows
the Fisher–Snedecor distribution. The authors provided evi-
dence that the HLT test may outperform the Bartlett test in
some scenarios.

Several works have employed information-theoretic tools as
a preprocessing step for change detection in PolSAR images.
They can be categorized into two approaches: one is based
only on discrimination measures, whereas the other considers
the asymptotic distribution of such tools.

In the first category, Inglada and Mercier [23] proposed
a new similarity measure for automatic change detection in
multitemporal SAR images. Such a measure was derived con-
sidering the symmetrized Kullback–Leibler (KL) divergence
(or distance) between the Edgeworth series expansions for
two distinct elements of the K distribution from the Pearson
system [37] for intensity SAR data. In [24], the KL measure
is improved by means of copula-based quantile regression to
generate local change measures. Furthermore, Erten et al. [38]
proposed a new method based on mutual information for quan-
tifying the coherent similarity between temporal multichannel
PolSAR images. Atto et al. [9] used the KL divergence for
spatio-temporal change detection in image time series.

In the second category, Nascimento et al. [25] derived
hypothesis tests based on several distance measures between
G0 distributions [39]. In terms of the nature of the image data,
these results were extended in [26] and [27] and applied to
boundary detection [40] and filtering [41] in PolSAR images.
All these references derived new proposals using contrast
measures designed from the scaled complex Wishart law.
Recently, Akbari et al. [42] introduced a change detector with
the HLT statistics as the contrast measure based on the relaxed
scaled Wishart likelihood.

This paper proposes three new change detection methodolo-
gies for fully polarimetric data. Additionally, a new expression
for the likelihood ratio statistics obtained from the scaled
Wishart distribution is achieved, and its relationship with the
individual distributions of the intensity channels is discussed.
Using Monte Carlo simulation, we quantify the performance of
four parametric methodologies for detecting the change: two
considering Shannon and Rényi entropies, one stemming from

the KL distance, and one based on the classic likelihood ratio
statistics. The methods are compared by their empirical test
size (ETS) and power. Finally, two experiments with actual
PolSAR data are performed. Results provide evidence that the
methods based on entropies are superior.

This paper is organized as follows. Section II provides the
background of the statistical modeling. A brief survey on
parametric methodologies for hypothesis testing on complex
covariance matrices is provided in Section III. In Section IV,
we present a comparative study of change detection methods
by means of Monte Carlo simulation. Additionally, we per-
form two experiments with actual PolSAR data. Section V
summarizes the main results.

II. STATISTICAL MODELING FOR POLSAR DATA

PolSAR systems represent each resolution cell by p polar-
ization elements comprising a complex random vector

y = [S1 S2 · · · Sp]� (1)

where the superscript � is the vector transposition. In single-
look PolSAR image processing, y is admitted to obey the
multivariate complex circular Gaussian distribution with zero
mean [43] whose probability density function (pdf) is

f y( ẏ; �) = 1

π p|�| exp(− ẏ∗�−1 ẏ)

where ẏ is an outcome of y, | · | is the matrix determinant,
the superscript ∗ denotes the complex conjugate transpose of a
vector, � is the covariance matrix of y such that � = E{ yy∗},
and E{·} is the statistical expectation operator. This distribution
is denoted by y ∼ NC (0,�). Besides being Hermitian and
positive-definite, � contains all the necessary information to
characterize the backscattered data [44].

In order to improve the signal-to-noise ratio, L independent
and identically distributed samples are usually averaged in
order to form the L-look covariance matrix [45]

Z = 1

L

L∑
i=1

yi y∗
i

where yi , i = 1, 2, . . . , L are the realizations of (1). Under
the aforementioned hypotheses, Z follows a scaled complex
Wishart distribution. Having � and L as parameters, such a
law is characterized by the following pdf:

fZ(Ż; �, L) = L pL |Ż|L−p

|�|L�p(L)
exp[−L tr(�−1 Ż)] (2)

where �p(L) = π p(p−1)/2∏p−1
i=0 �(L − i), L ≥ p, �(·) is

the gamma function, and tr(·) is the trace operator. We denote
it by Z ∼ W(�, L). This distribution satisfies E{Z} = �,
which is a Hermitian positive-definite matrix [45]. In practice,
L is treated as a parameter and must be estimated. The
resulting distribution is the relaxed Wishart distribution, and
it is denoted by WR(�, L) [46].

Due to its optimal asymptotic properties, we employ
the maximum likelihood (ML) approach to estimate the
parameters � and the equivalent number of looks L. Let
Z = {Z1, Z2, . . . , ZN } be a random sample of size N obtained
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Fig. 1. AIRSAR image of Flevoland (channel HH).

from Z ∼ WR(�, L). Setting �k(θ) = log fZ(Zk; �, L) for
θ = [vec(�)�, L]� as the log-likelihood of the kth random
matrix, Zk, from Z, solving N−1 ∑N

k=1 ∇�k(θ̂) = 0, we have
that �̂ = N−1 ∑N

k=1 Zk, and

p log L̂ + 1

N

N∑
k=1

log |Zk| − log |�̂| − ψ(0)p (L̂) = 0 (3)

where vec(·) is the vectorization operator and ψ
(0)
p (·) is

the zero-order term of the vthorder multivariate polygamma
function

ψ(v)p (L) =
p−1∑
i=0

ψ(v)(L − i)

and ψ(v)(·) is the ordinary polygamma function expressed by

ψ(v)(L) = ∂v+1 log�(L)

∂Lv+1

for v ≥ 0; note that ψ(0) is the digamma function [47].
Thus, the ML estimator of � is the sample mean, while L̂

is obtained by solving the system shown in (3). We used the
Newton–Raphson iterative method [48] to solve it. The work
by Anfinsen et al. [45] is an important reference on how to
efficiently estimate L.

Fig. 1 shows an area from the AIRSAR image of Flevoland,
the Netherlands, obtained on August 1989 [49] with four
nominal looks. We delimited three regions of interest.

Table I lists the ML parameter estimates as well as the
sample sizes. Each sample is taken from a single class without
evidence of texture. Notice that the estimates for the equivalent
number of looks are very close, although lower than the
nominal value. We also show the determinant of the estimated
covariance matrix. This quantity, called geometric intensity
in [50], is the generalized variance in multivariate analysis; it
can be used as a measure of mean backscatter [51]. According
to it, region B2 presents the highest return, followed by B1 and
by B3; this is in agreement with what is observed in channel
HH (see Fig. 1).

Fig. 2 depicts the empirical densities of data from the
agricultural regions along with the fitted marginal densities.
The scaled Wishart density collapses to the Gamma density

fZi (zi ; θi , L) = L L zi
L−1

�(L) θ L
i

exp
[− L θ−1

i zi
]

(4)

TABLE I

ESTIMATED PARAMETERS ON POLSAR DATA FROM FLEVOLAND

Fig. 2. Histograms of HH channel data and densities with an estimated
number of looks (black curve) and fixed a priori (gray curve), respectively.
(a) Region B1. (b) Region B2. (c) Region B3.

where i ∈ {HH, HV, VV}, θk is the element (k, k) of �,
and Zk is the (k, k)th entry of Z. In practice, θi represents
the mean polarization channel i ∈ {1(HH), 2(HV), 3(VV)}.
Fig. 2(a)–(c) shows the data and densities for the estimated
number of looks WR(�̂, L̂) (black curve) and the fixed value
W(�̂, 4) (gray curve). These densities are remarkably close,
and also to the histograms, so the Gamma assumption is
reasonable.

According to Akbari et al. [52], if {Zi; i = 1, 2, . . . , n}
is a random sample drawn from Z ∼ W(L,�) and �̂

represents the ML estimator of �, then tr(�̂−1 Zi) follows
a Gamma distribution for i = 1, 2, . . . , n. Fig. 3 displays
fitted and empirical densities of such transformed data for
the three selected regions. These results indicate that data
may follow a scaled complex Wishart model. Additionally,
the Kolmogorov–Smirnov statistic p-values for checking the
adequacy of the Gamma model to the transformed data are
0.1377, 0.4923, and 0.3911 for regions B1, B2, and B3,
respectively.

We used likelihood ratio tests for two and three samples
in order to quantify the similarity among these samples. The
results presented in Table II point out that B1 is different from
B2 and B3, but these last two are similar. Although a visual
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Fig. 3. Empirical (+) and fitted (solid curve) densities for transformed
coherence matrices in selected regions. (a) Region B1. (b) Region B2.
(c) Region B3.

TABLE II

HOMOGENEITY TEST AMONG CONSIDERED SAMPLES

inspection of areas B2 and B3 (Fig. 1) suggests regions of
different nature, their observations projected via tr(�−1 Zi) are
statistically similar.

These samples are used to validate our proposed methods
in Section IV.

III. HYPOTHESIS TESTS IN POLSAR DATA: A SURVEY

This section provides a survey concerning three hypothesis
tests that have been studied in the PolSAR data literature.

We assume that PolSAR data follow a scaled complex
Wishart distribution. Change detection is often formulated as
a statistical test for H0 : �1 = �2, assuming L known.

The two main approaches in the literature are: 1) likelihood
ratio [11] and 2) stochastic distances [27]. In this paper,
the former proposal is extended to the context of scaled com-
plex Wishart distributions, since the original approach used the
nonscaled Wishart law. Moreover, this paper also introduces
an alternative way for validating H0 by means of entropy mea-
sures [26]. Subsequently, these methodologies are introduced
and discussed. In order to obtain more general results, we will
provide expressions for testing H0 : (�1, L1) = (�2, L2).

A. Likelihood Ratio Statistics

The log-likelihood ratio (LR) statistic has great importance
in inference on parametric models. Let SLR be the LR statistic
for assessing the simple null hypothesis H0. As discussed
in [53], such a statistic based on H0 has an asymptotic
distribution χ2

q , where q is the difference between the dimen-
sions of the parameter spaces under the alternative and the
null hypotheses. We denote such spaces by 	1 and 	0,
respectively.

Let {X1, X2, . . . , XN1} and {Y1, Y2, . . . , YN2 } be two
random samples from WR(�1, L1) and WR(�2, L2) of sizes
N1 and N2, respectively. The LR statistic is given by

SLR = −2 logλWR(�,L)

where λWR(�,L) = supθ∈	0
�(θ)/ supθ∈	 �(θ), 	 = 	0 ∪	1

and 	0 ∩	1 = ∅. Thus, we have that

logλWR(�,L)

= A(p)+ log
|�̂1|N1 L̂1 |�̂2|N2 L̂2

|�̂c|(N1+N2) L̂c

+ (L̂c − L̂1)

N1∑
i=1

log |Xi | + (L̂c − L̂2)

N2∑
i=1

log |Yi |

+
N1∑

i=1

tr
[(

L̂1�̂
−1
1 − L̂c�̂

−1
c

)
Xi
]

+
N2∑

i=1

tr
[(

L̂2�̂
−1
2 − L̂c�̂

−1
c

)
Yi
]

(5)

and

A(p) = p log
L Lc(N1+N2)

c

L L1 N1
1 L L2 N2

2

+ log
�p(L1)

N1�p(L2)
N2

�p(Lc)N1+N2

where Lc and �c represent the number of looks and
covariance matrix under the null hypothesis, respectively.
Akbari et al. [42] discuss the two-sample LR test under the
WR model.

Sections III-B and III-C discuss tests for H0 based on
information-theoretic measures.

B. Kullback–Leibler Distance

The KL divergence (DKL) is one of the oldest discrepancy
measures between stochastic models; it has a central role in
information theory [54]. This quantity was first understood as
a measure of the error in choosing a model when another is the
true one. It has been used in image processing for segmenta-
tion [55], classification [56], boundary detection [57], [58], and
change detection [23]. Moreover, DKL has a close relationship
with the Neyman–Pearson lemma [54], and its symmetrization
has been suggested as a correction form for another important
goodness-of-fit measure for comparing statistical models: the
Akaike information criterion [59].

Let X and Y be two random matrices defined over the
common support X of positive-definite complex matrices of
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size p × p. The KL distance is defined by

dKL(X,Y ) = 1

2
[DKL(X,Y )+ DKL(Y , X)]

= 1

2

[∫
X

fX log
fX

fY
d Ż +

∫
X

fY log
fY

fX
d Ż

]

= 1

2

∫
X
( fX − fY ) log

fX

fY
d Ż

with differential element d Ż given by

d Ż =
p∏

i=1

dzii

p∏
i, j = 1︸ ︷︷ ︸

i< j

d
{zi j }d�{zi j }

where zi j is the (i, j)th entry of matrix Ż; and 
 and � denote
the real and imaginary part operators, respectively [43].

When distances are taken between particular cases of the
same distribution, only the parameters are relevant. In this
case, the parameters θ1 and θ2 replace the random variables
X and Y .

Salicrú et al. [60] proposed a hypothesis test based on dKL.
Let θ̂1 = (θ̂11, θ̂12, . . . , θ̂1M )

� and θ̂2 = (θ̂21, θ̂22, . . . , θ̂2M )
�

be the ML estimators for θ1 and θ2 based on random samples
of size N1 and N2, respectively. Under the regularity condi-
tions discussed in [60, p. 380], the following lemma holds.

Lemma 1: If (N1/(N1 + N2)) −−−−−−→
N1,N2→∞ λ ∈ (0, 1) and

θ1 = θ2, then

SKL(θ̂1, θ̂2) = 2 N1 NY

N1 + N2

dKL(θ̂1, θ̂2)

h′(0)φ′′(1)
D−−−−−−→

N1,N2→∞ χ2
M (6)

where “
D−→” denotes convergence in distribution.

Proposition 1 is a test for the null hypothesis θ1 = θ2 based
on Lemma 1.

Proposition 1: Let SKL(θ̂1, θ̂2) = s and θ̂1 and θ̂2 be
the ML estimates obtained from two sufficiently large
random samples of sizes N1 and N2, respectively; then,
the null hypothesis θ1 = θ2 can be rejected at level α if
Pr(χ2

M > s) ≤ α.
Frery et al. [27] presented closed expressions for dKL when

the random matrices X and Y follow the Wishart distribution:
dKL(θ1, θ2)

= L1 − L2

2

{
log

|�1|
|�2| − p log

L1

L2
+ ψ(0)p (L1)− ψ(0)p (L2)

}
− p(L1 + L2)

2

+ tr
(

L2�
−1
2 �1 + L1�

−1
1 �2

)
2

(7)

from which the SKL test statistic follows.

C. Shannon and Rényi Entropies

The Shannon entropy has achieved a prominent position
in PolSAR imagery. Morio et al. [61] applied it for extract-
ing features from polarimetric targets, assuming the circular
Gaussian distribution. The Shannon entropy has also been

used for classifying PolSAR textures [62], [63]. In the sub-
sequent discussion, we present a comprehensive examination
of hypothesis tests based on Shannon and Rényi entropies.

Let fZ(Z; θ) be a pdf with a parameter vector θ . The
Shannon and Rényi (with order β) entropies are defined,
respectively, as

HS(θ) = −
∫
X

fZ(Ż; �, L) log fZ(Ż; �, L) d Ż

= E{− log fZ(Z)} (8)

and

H β
R (θ) = (1 − β)−1 log

∫
X

f βZ (Ż; �, L)d Ż

= (1 − β)−1 log E
{

f β−1
Z (Z)

}
. (9)

Pardo et al. [64] derived an important result, which paves
the way for asymptotic statistical inference methods based on
entropies.

Lemma 2: Let θ̂ = [θ̂1 θ̂2 · · · θ̂M ]� be the ML estimate
of the parameter vector θ = [θ1 θ2 · · · θM ]� based on an
N-point random sample from a model Z having pdf f (Ż; θ).
Then

√
N
[
HM(θ̂)− HM(θ)

] D−−−−→
N→∞ N (0, σ 2

M(θ))

where M ∈ {S, R}, N (μ, σ 2) is the Gaussian distribution
with mean μ and variance σ 2

σ 2
H (θ) = δ�K(θ)−1δ (10)

where K(θ) = E{−∂2 log fZ(Z; θ)/∂θ2} is the Fisher infor-
mation matrix and δ = [δ1 δ2 · · · δM ]� such that
δi = ∂HM(θ)/∂θi for i = 1, 2, . . . ,M .

Now, we introduce a methodology for hypothesis tests and
confidence intervals based on entropies. We aim at testing the
following hypotheses:{

H0 : HM(θ1) = HM(θ2) = v

H1 : HM(θ1) �= HM(θ2)

where M ∈ {S, R}. In other words, is there any statistical evi-
dence for rejecting the assumption that two PolSAR samples
come from the same model?

Let θ̂i be the ML estimate for θi based on a random sample
of size Ni from Zi for i = 1, 2, . . . , r and r ≥ 2. From
Lemma 2, we have that

r∑
i=1

Ni
(

HM(θ̂i )− v
)2

σ 2
M(θ̂i)

D−−−−→
Ni →∞ χ2

r−1

where

v =
[

r∑
i=1

Ni

σ 2
M(θ̂i )

]−1 r∑
i=1

Ni HM(θ̂i )

σ 2
M(θ̂i )

.

Then, we obtain the following test statistic:

SM(θ̂1, θ̂2, . . . , θ̂r ) =
r∑

i=1

Ni (HM(θ̂i )− v)2

σ 2
M(θ̂i )

(11)
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the expressions for HM(θ̂i ) and σ 2
M(θ̂i) are presented the

Appendix. We are now in a position to state the following
result.

Proposition 2: Let Ni , i = 1, 2, . . . , r , be sufficiently large.
If Sh

φ(θ̂1, θ̂2, . . . , θ̂r ) = s, then the null hypothesis H0 can be
rejected at a level α if Pr(χ2

r−1 > s) ≤ α.
Whereas tests based on stochastic distances, such as dKL,

allow contrasting only two samples, those based on entropies
permit assessing r samples at once [see (11)]. For issues
involving more than two populations (r > 2 in (11)), this
is a major advantage of the latter over the former. In the case
of comparing two samples of the same size, i.e., r = 2 and
N1 = N2 = N , (11) reduces to

SM(θ̂1, θ̂2) = N
[HM(θ̂1) − HM(θ̂2)]2

σ 2
M(θ̂1) + σ 2

M(θ̂2)
.

IV. PERFORMANCE ANALYSIS

In this section, we assess the performance of the method-
ologies proposed with three experiments involving simulated
(under the scaled Wishart complex law) and actual Pol-
SAR data. First, we use Monte Carlo experiments to mea-
sure: 1) test size [false alarm (FA) rate] and 2) test power
[1 − false-negative (FN) rate]. For the test size, we check
whether two samples from X ∼ W (B1, 4) are from the same
distribution, i.e., in a scenario where there was no change
and there might be false positives (FPs). We assess the test
power checking if two samples from X ∼ W (B1, 4) and
X ∼ W (B1 · (1 + k), 4), for k = 0.2, 0.3, 0.4, are correctly
identified as a situation where there was a change. We then
perform two experiments with actual PolSAR data.

A. Simulated Data

We compare the following hypothesis tests:

1) likelihood ratio SLR;
2) KL distance SKL;
3) statistics based on Shannon SS and Rényi SβR entropies.

We fixed β = 0.1, since this value was found in [26] to
provide good discrimination in hard-to-deal-with situations.
We assume that the number of looks is known, as in [11]
and [25]. Therefore, we are able to compare information-
theoretic measures with the methodology proposed by
Conradsen et al. [11].

The samples are generated according to Algorithm 1.
The parameters used for assessing the null hypothesis

H0 : �1 = �2 are L1 = L2 = 4, and (12), the sample
covariance matrix of area B1 (see Fig. 1). As we are interested
in the behavior of the tests with small sample sizes, we com-
puted the size of the hypothesis at α ∈ {1%, 5%, 10%} for
N1 = N2 = N ∈ {10, 11, . . . , 50}.

Let T be the number of Monte Carlo replications and C the
number of occurrences under H0 (i.e., pairs of samples are
taken from the same model) on which the null hypothesis is
rejected at the nominal level α. The ETS or FP rate is defined
by αETS = C/T . We used T = 5500, as suggested in [25],
and αETS did not suffer expressive changes for larger values.

Algorithm 1 Sampling From the Scaled Complex Wishart
Distribution
Require: � Hermitian positive definite p × p matrix
Require: L ≥ 3 integer
1: Denote R = 
{�} and I = �{�}.
2: for i = 1, 2, . . . , L do
3: Generate an outcome of the 2p-variate Gaussian dis-

tribution xi = (xi1, xi2, . . . , xip, xi(p+1), . . . , xi(2p))
� ∼

N2p(0,�∗), where

�∗ = 1

2

[
R −I
I R

]
.

4: Set the random vector

yi = (xi1, xi2, . . . , xip)
� + j (xi(p+1), . . . , xi(2p))

�.

With this, yi is a p-variate outcome of the complex
Gaussian distribution NC

p (0,�).
5: end for
6: Return L−1 ∑L

i=1 yi y∗
i , outcome of W(�, L), the scaled

complex Wishart distribution.

TABLE III

ESTIMATED TEST SIZES (FP RATES)

Table III shows: 1) the ETS at nominal levels 1%, 5%, and
10% and 2) the mean test statistic (S•) of the four statistics.

On an average, all test statistics behave as expected when
the sample sizes increase: S̄S and S̄0.1

R tend to one, while S̄LR
and S̄KL tend to nine. Recall that the asymptotic distribution
of the two former is χ2

9 , while the two latter are χ2
1 .

The SLR and SS tests exhibit the closest empirical sizes to
the nominal levels, as confirmed by Fig. 4. The ETS associated
with S0.1

R and SKL are biased; however, the bias reduces as the
sample size increases. We conclude that these two statistics
require larger sample sizes to achieve the expected asymptotic
behavior.
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Fig. 4. Values for αETS sizes on synthetic data for different scenarios at the levels (a) 1%, (b) 5%, and (c) 10%.

Fig. 5. Estimated test powers for several scenarios at the level 1%. (a) (B1, 4) versus (B1 · (1 + 0.2), 4). (b) (B1, 4) versus (B1 · (1 + 0.3), 4).
(c) (B1, 4) versus (B1 · (1 + 0.4), 4).

In general terms, Table III suggests this inequality

ETSSKL ≥ ETSSLR ≥ ETSSS ≥ ETSS0.1
R
. (13)

The size of tests (FP rates) based on the Shannon entropy and
likelihood ratio are the closest to the nominal level.

We also studied the test power. We wish to reject the
hypothesis H0, given two samples drawn from X ∼ W(B1, 4)
and Y ∼ W(B1 · (1 + k), 4) where k = 0.2, 0.3, 0.4, i.e.,
under H1. The rate η = (T − C∗)/T , where C∗ is the
number of rejections of H0 under H1 and estimates the
Type-II error or FN [19], and we aim at quantifying the test
power 1 − η.

Fig. 5 presents the estimated power for several samples
sizes. The test based on Shannon entropy performs the best.
In this case, we obtain the inequality

(1 − η)SS ≥ (1 − η)S0.1
R

≥ (1 − η)SKL ≥ (1 − η)SLR .

The relation between discriminatory powers within groups
{SKL, SLR}, and {SS, SβR} has been discussed in the statistical

literature. This fact can be explained twofold, namely: 1) the
relationship between the Neyman and Pearson lemma and the
KL distance [54] and 2) the fact that limβ→1 SβR = SS [65].

The best test statistics should have both empirical size near
to the nominal level and the highest estimated power. Thus,
based on this evidence and on the estimated size, we suggest
SS as the best discriminator on scenarios that follow the scaled
complex Wishart distribution.

B. Experiments With Data From Sensors

In this section, we apply the proposed test statistics to
two studies: 1) for assessing H0 : �1 = �2 to the
data presented in Fig. 1 (single date) and 2) for detecting
changes on two PolSAR images captured at different instants,
as displayed in Fig. 8 (multitemporal data). ENL is assumed
constant.

1) Single-Date Experiment: Our first experiment aims at
assessing αETS, the ETS (Type-I error or the probability of
FA), using pairs of disjoint samples from the same target.

B1 =
⎡⎣ 9.528 × 10−3 (−3.469 + 1.048 j)× 10−4 (1.439 + 1.164 j)× 10−3

1.794 × 10−3 (8.551 − 1.608 j)× 10−5

4.955 × 10−3

⎤⎦ (12)
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Fig. 6. ETS for actual data at levels (a) 1%, (b) 5%, and (c) 10%.

This experiment is outlined in Algorithm 2. We used sam-
ples of size N ∈ {3 × 3, 4 × 4, . . . , 23 × 23}.

Fig. 6 shows the observed αETS. Inequality (13) is also
verified on actual data. For α = 1%, 11.67% ≤ αETS(SLR) <
αETS(SKL) ≤ 18.93% and 1.527% ≤ αETS(SS) <
αETS(S0.1

R ) ≤ 6.909%, i.e., all tests overestimate α, but SS

and S0.1
R presented better results than SLR and SKL. For

B2 and B3, αETS(S0.1
R ) ≤ 1.49%, overcoming 2.091% ≤

αETS(SS) ≤ 5.055%, 6.745% ≤ αETS(SLR) ≤ 10.618%, and
7.164% ≤ αETS(SKL) ≤ 14.109%.

PolSAR regions are Wishart; our explanation for the better
performance of S0.1

R is deviations from this hypothesis.
These results present evidence that the test statistics based

on S0.1
R outperforms the other ones. This test presented good

Fig. 7. Images from the study areas: Los Angeles, California. (a) First scene.
(b) Second scene.

Fig. 8. UAVSAR images (in Pauli decomposition) on April 23, 2009 and
May 11, 2015. (a) Scene 1 (before). (b) Scene 1 (after). (c) Scene 2 (before).
(d) Scene 2 (after). (e) Scene 1 (reference map). (f) Scene 2 (reference map).

results even for small samples. Thus, this measure is suggested
as a relevant change detection tool for PolSAR imagery.

2) Multitemporal Data: Fig. 7 presents the study areas
for this experiment: surroundings of the city of Los Ange-
les, CA, USA. These pictures refer to a dense urban area
whose changes are caused by the urbanization process.
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Fig. 9. p-value maps as evidence of changes between two dates for the first scene. (a) S0.1
R -3 × 3. (b) S0.1

R -3 × 3. (c) SS-3 × 3. (d) SS-3 × 3. (e) SLR-3 × 3.
(f) SLR-3 × 3. (g) SKL-3 × 3. (h) SKL-3 × 3.

Algorithm 2 Experiment Design for Data From the Same
Target
1: for j = 1, 2, . . . , 5500 do
2: Extract two disjoint regions U j and V j from areas

B1,B2, and B3.
3: Generate two vectors of size N , u( j ) and v( j ) from U j

and V j , respectively, sampling without replacement.
4: Estimate θ̂

( j )
1 and θ̂

( j )
2 based on u( j ) and v( j ), respec-

tively.
5: Compute the decision from Propositions 1 and 2, and

execute the test based on SLR for α = {1%, 5%, 10%}.
6: end for
7: Let T be the number of times that the null hypothesis is

rejected. Calculate the ETS (α̂1−α) at level α as

αETS = T/5500, if V j = U j .

Ratha et al. [30] employed these data in the proposal of change
detectors for single-look polarimetric data using a geodesic
distance. Here, we apply the four multilook PolSAR data
detectors discussed in Section III. Fig. 8 shows the Pauli
decomposition of two uninhabited aerial vehicle synthetic
aperture radar (UAVSAR) images obtained by the JPL’s
UAVSAR sensor at two different instants (April 23, 2009 and
May 3, 2015).

Using windows of size 3×3 on both the dates, we computed
the SLR, SKL, SS , and S0.1

R test statistics, and from them,
p-value maps [see Figs. 9 and 10]. Probability values higher
than 0.01% are drawn in black, as they provide no evidence
of change. Values below 0.01% range vary from red to dark
blue (from strong to weak evidence of change).

It is noticeable that S0.1
R and SS are similar [see

Figs. 9(a) and (c) and 10(a) and (c)], while SLR and SKL look
alike [see Figs. 9(e) and (g) and 10(e) and (g)], but somewhat
different from the previous pair.

Fig. 11 shows the relationship between S0.1
R and SS for

the second scene, along with the identity function for refer-
ence. The p-values associated with the Shannon statistic are
smaller than that those related to the Rényi statistic, so the
former tends to reject more than S0.1

R , as discussed in the
simulation experiments.

Finally, Figs. 9(b), (d), (f), and (h) and 10(b), (d), (f), and (h)
show binary images resulting from thresholding the S0.1

R , SS ,
SLR, and SKL statistics for the first and second scenes: p-values
larger than 10−4 are shown in white, otherwise in black. The
results, again, favor entropy-based detectors.

To confirm the qualitative discussion, we quantify the
performance of detectors with respect to reference maps
in Fig. 8(e) and (f) in terms of five measures.

1) False Positive: Number of pixels indicated as change by
reference map (RM), but classified as no change.

2) False Negative: Number of pixels indicated as no change
by RM, but classified as change.

3) False Alarm Rate: (FP+FN)/N , where N is the number
of unchanged pixels according to the detector.

4) Detection Rate: TP/CG, where TP is the number of
pixels indicated as change by both the RM and the
detector, and CG is the number of changed pixels
according to the detector.

5) Kappa Coefficient: κ = (A − B)/(1 − B), where A =
1 − pFP − pFN and B = (pTP + pFP)(pTP + pFN) +
(pTN + pFP)(pTN + pFN), where pC is the proportion of
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Fig. 10. p-value maps as evidence of changes between two dates for the second scene. (a) S0.1
R -3 × 3. (b) S0.1

R -3 × 3. (c) SS-3 × 3. (d) SS-3 × 3.
(e) SLR-3 × 3. (f) SLR-3 × 3. (g) SKL-3 × 3. (h) SKL-3 × 3.

Fig. 11. Relationship between p-values from S0.1
R and SS .

TABLE IV

DETECTORS’ PERFORMANCE

pixels under the condition C relative to the total number
of pixels and TN is the number of pixels indicated as
no change by both RM and the detector.

The reference maps were prepared by specialists with Bing
and Google Earth imagery [30].

Table IV shows the results. SR obtained the best perfor-
mance, followed by SS , for both the data sets with respect to
κ and detection rate (DR). These detectors presented lower
FN and FA than SLR and SKL. SKL and SLR performed better
than entropy-based detectors with respect to FP. The values of
FP were smaller than 5% in all the cases, so this is not an
issue for any detector.

V. CONCLUSION

We quantified and compared the performance of four change
detection methods for fully PolSAR data. These methods are
based on the likelihood-ratio statistic, on the KL distance, and
on the Rényi and Shannon entropies. We used empirical test
powers and ETSs as comparison criteria.

First, the performance of the methods was quantified
through a Monte Carlo study using scenarios modeled by
the scaled complex Wishart law. The ETS s showed evidence
that the detectors based on the likelihood ratio and Shannon
entropy statistics presented the best performance. In particular,
the one based on the entropy is the best for small samples
and statistically similar to the SLR. In addition, the tests
based on the KL and on the likelihood ratio statistics tend
to overestimate the nominal level, while those which employ
entropies underestimate it.

Regarding the empirical test power, the test based on the
Shannon entropy presented, in a consistent fashion, the best
results. Computational costs are quite different. The test statis-
tic based on the likelihood ratio SLR requires evaluating (5),
while SKL depends only on the KL distance (7). The latter
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is less demanding than the former by an order of magnitude.
Thus, on those situations in which SKL and SLR are competi-
tive (for moderate and large sample sizes), the KL test is more
attractive, because it has the lowest computational cost.

Second, and since estimated test sizes were quite competi-
tive, two experiments with actual data were performed. For the
single-date experiment, in all the situations considered, the test
based on the Rényi entropy with order β = 0.1 presented
the best results. The multitemporal data experiments suggest
that change detectors equipped by entropies provide better
performance than those based on the KL distance and those
based on the likelihood ratio statistic. Finally, the diversity of
tests statistics stemming from Information Theory opens the
venue for investigation of composite decision rules, as in [66].

Future works will aim to adapt developments made in this
paper to more general distributions as, for instance, the GPol
and its particular cases (KPol, G0

Pol, and GH
Pol), the Kummer-U ,

and M laws (see [67, Sec. 4.1], [57]).

APPENDIX

Applying (2) in (8) and (9), we obtain the following
entropies [26]:

HS(θ) = p(p − 1)

2
logπ − p2 log L + p log |�| + pL

+ (p − L)ψ(0)p (L)+
p−1∑
k=0

log�(L − k) (14)

and

H β
R (θ) = p(p − 1)

2
logπ − p2 log L + p log |�|

− pq logβ

1−β +
∑p−1

i=0 [log�(q−i)−β log�(L−i)]
1 − β

(15)

where q = L + (1 − β)(p − L).
Under the scaled complex Wishart law, Frery et al. [26]

derived the following variances:

1) Shannon:

σ 2
S =

[
(p − L)ψ(1)p (L)+ p − p2

L

]2

ψ
(1)
p (L)− p

L

+ p2

L
vec(�−1)∗(� ⊗ �) vec(�−1). (16)

2) Rényi Entropy:

σ 2
R,β =

{
β

1−β
[
ψ
(0)
p (q)− ψ

(0)
p (L)

]− pβ ln(β)
1−β − p2

L

}2

ψ
(1)
p (L)− p

L

+ p2

L
vec(�−1)∗(� ⊗ �) vec(�−1). (17)
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