Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/49649
Título: | A genetic algorithm methodology to find the maximum datapath coverage for combinational logic circuits | Autores/as: | Sosa, Javier Montiel-Nelson, Juan A. Nooshabadi, Saeid |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Vector generation genetic algorithms datapath coverage VLSI |
Fecha de publicación: | 2010 | Editor/a: | 0218-1266 | Publicación seriada: | Journal of Circuits, Systems and Computers | Resumen: | In this paper, we present a genetic algorithm (GA) based methodology for vector generation that maximizes the metric of datapath coverage for a given combinational logic circuit, and compare it with a standard greedy algorithm. The search of maximum coverage vectors is a complex optimization of a satisfiability problem. The GA deals with the optimization problem, whilst an external satisfiability solver is invoked to deal with the coverage problem. Experimental results and performance comparisons based on the large set of MCNC'91 suite of benchmark circuits are presented. They show significant speedups of the GA methodology against a greedy algorithm for large circuits. | URI: | http://hdl.handle.net/10553/49649 | ISSN: | 0218-1266 | DOI: | 10.1142/S0218126610006165 | Fuente: | Journal of Circuits, Systems and Computers[ISSN 0218-1266],v. 19, p. 435-450 |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 10-nov-2024
Visitas
53
actualizado el 06-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.