Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/49188
Title: Optimatization of technical rules by genetic algorithms: Evidence from the Madrid stock market
Authors: Fernández-Rodríguez, Fernando 
González-Martel, Christian
Sosvilla-Rivero, Simón
Issue Date: 2005
Publisher: 0960-3107
Journal: Applied Financial Economics 
Abstract: This paper investigates the profitability of a simple and very common technical trading rule applied to the General Index of the Madrid Stock Market. The optimal trading rule parameter values are found using a genetic algorithm. The results suggest that, for reasonable trading costs, the technical trading rule is always superior to a risk-adjusted buy-and-hold strategy. © 2005 Taylor & Francis Group Ltd.
URI: http://hdl.handle.net/10553/49188
ISSN: 0960-3107
DOI: 10.1080/09603100500107818
Source: Applied Financial Economics[ISSN 0960-3107],v. 15, p. 773-775
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

10
checked on Jan 29, 2023

Page view(s)

20
checked on Oct 15, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.