Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/49161
DC FieldValueLanguage
dc.contributor.authorFalcón, Sergioen_US
dc.contributor.authorPlaza, Ángelen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-24T04:43:25Z-
dc.date.available2018-11-24T04:43:25Z-
dc.date.issued2008en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://hdl.handle.net/10553/49161-
dc.description.abstractAn extension of the classical hyperbolic functions is introduced and studied. These new k-Fibonacci hyperbolic functions generalize also the k-Fibonacci sequences, say {Fk, n}n = 0∞, recently found by studying the recursive application of two geometrical transformations onto over(C, -) = C ∪ {+ ∞} used in the well-known four-triangle longest-edge (4TLE) partition. In this paper, several properties of these k-Fibonacci hyperbolic functions are studied in an easy way. We finalize with the introduction of some curves and surfaces naturally related with the k-Fibonacci hyperbolic functions.en_US
dc.languageengen_US
dc.relationMtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamientoen_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.sourceChaos, Solitons and Fractals [ISSN 0960-0779], v. 38 (2), p. 409-420en_US
dc.subject120504 Teoría elemental de los númerosen_US
dc.subject.otherHyperbolic functionsen_US
dc.subject.otherLucas numbersen_US
dc.subject.otherk-Lucas numbersen_US
dc.titleThe k-Fibonacci hyperbolic functionsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.chaos.2006.11.019
dc.identifier.scopus42949086873-
dc.identifier.isi000256729900012-
dc.identifier.isi000256729900012-
dcterms.isPartOfChaos Solitons & Fractals-
dcterms.sourceChaos Solitons & Fractals[ISSN 0960-0779],v. 38 (2), p. 409-420-
dc.contributor.authorscopusid6602997880-
dc.contributor.authorscopusid7006613647-
dc.description.lastpage420-
dc.identifier.issue2-
dc.description.firstpage409-
dc.relation.volume38-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid809328-
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Falcon, S
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateOctubre 2008
dc.identifier.ulpgces
dc.description.jcr2,98
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-9917-3101-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFalcón Santana, Sergio-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

41
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

40
checked on Mar 30, 2025

Page view(s)

95
checked on Nov 30, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.