Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/49161
Title: The k-Fibonacci hyperbolic functions
Authors: Falcón, Sergio 
Plaza, Ángel 
UNESCO Clasification: 120504 Teoría elemental de los números
Keywords: Hyperbolic functions
Lucas numbers
k-Lucas numbers
Issue Date: 2008
Project: Mtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamiento 
Journal: Chaos, Solitons and Fractals 
Abstract: An extension of the classical hyperbolic functions is introduced and studied. These new k-Fibonacci hyperbolic functions generalize also the k-Fibonacci sequences, say {Fk, n}n = 0∞, recently found by studying the recursive application of two geometrical transformations onto over(C, -) = C ∪ {+ ∞} used in the well-known four-triangle longest-edge (4TLE) partition. In this paper, several properties of these k-Fibonacci hyperbolic functions are studied in an easy way. We finalize with the introduction of some curves and surfaces naturally related with the k-Fibonacci hyperbolic functions.
URI: https://accedacris.ulpgc.es/handle/10553/49161
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2006.11.019
Source: Chaos, Solitons and Fractals [ISSN 0960-0779], v. 38 (2), p. 409-420
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.