Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48815
Título: | Phonocardiography signal segmentation for telemedicine environments | Autores/as: | Murillo Rendón, Santiago Hoyos, Cristian Castro Travieso-Gonzales, Carlos M. Castellanos-Domínguez, Germán |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Heart Sound Segmentation Phonocardiogram Telemedicine Autocorrelation |
Fecha de publicación: | 2013 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 12th International Work-Conference on Artificial Neural Networks (IWANN) | Resumen: | In this paper, phonocardiography (PCG) segmentation methodology based on envelope detection is developed by using a time-scale representation and a synthetic electrocardiogram signal (EKG). The heart cycle duration is calculated by autocorrelation of S1-S2 sounds that are synchronized with the synthetic EKG. Two algorithms for noisy signal removal are implemented to ensure the detection of signals with low signal to noise ratio. Approach is tested in a PCG database holding 232 recordings. Results show an achieved accuracy up of 90%, thus, overperforming three state-of-the-art PCG segmentation techniques used to compare the proposed approach. Additionally, the synthetic EKG is built by estimation of heart rate length, thus it does not use a patient recording EKG, reducing the computational cost and the amount of required devices. | URI: | http://hdl.handle.net/10553/48815 | ISBN: | 9783642386817 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-38682-4_15 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7903 LNCS, p. 124-134 |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 25-feb-2024
Visitas
22
actualizado el 18-nov-2023
Descargas
55
actualizado el 18-nov-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.