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Abstract. In this paper, phonocardiography (PCG) segmentation methodology
based on envelope detection is developed by using a time-scale representation
and a synthetic electrocardiogram signal (EKG). The heart cycle duration is cal-
culated by autocorrelation of S1-S2 sounds that are synchronized with the syn-
thetic EKG. Two algorithms for noisy signal removal are implemented to ensure
the detection of signals with low signal to noise ratio. Approach is tested in a
PCG database holding 232 recordings. Results show an achieved accuracy up of
90%, thus, overperforming three state-of-the-art PCG segmentation techniques
used to compare the proposed approach. Additionally, the synthetic EKG is built
by estimation of heart rate length, thus it does not use a patient recording EKG,
reducing the computational cost and the amount of required devices.
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1 Introduction

Auscultation is the basic diagnostic tool for every medical physician, because of its
simplicity, associated low-cost, and its non-invasive nature. The heart sound recorded
by auscultation or phonocardiography(PCG) is the primary mechanical analysis tool for
the heart function. Other recent techniques, as echocardiography, suggest more sensible
methods to estimate the cardiac mechanics. Nevertheless, their associated high cost and
the elaborated medical knowledge needed for their evaluation make them unsuitable for
uncontrolled environment applications, such as telemedicine.

In cardiac auscultation, the physician finds natural heart sounds originated by the
opening and closing valves, named S1 and S2 sounds, respectively. The systolic in-
terval starts at the beginning of S1 and extends until the beginning of S2, while the
diastolic interval starts at the beginning of S2 and extends until the next S1. Occurrence
of additional sounds in the periods, called little and big silences (intervals between S1
and S2), are clear evidence of myocardium mechanical failures. Each period composed
by these systolic and diastolic periods is known as cardiac cycle and it is the basic unit
for the sound heart analysis. Identification of those additional sounds requires a higher
medical ability and their recognition can vary because of the inherent limitations in the
listener and the limited sensibility of the human ear in the low-frequency range [1].
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Hence, there is a need for development of automatic aided diagnosis tools, providing a
more objective mechanism for identification of heart sounds.

To this end, several segmentation techniques are found in the literature that, how-
ever, commonly need for additional information extracted from signals as the electro-
cardiogram (EKG) or the carotid pulse [2]. That is, techniques must have more sources
and thus increase the complexity and cost of the acquisition system, making its usage
prohibitive in telemedicine applications. Particularly, a comparison of envelope-based
segmentation methods is given in [3], where most of them make use of feature extrac-
tion techniques such as Shannon’s energy envelope, Hilbert transform and other car-
diac features. Other approaches use the energy estimated from the Short Time Fourier
Transform spectrogram or the scalogram computed with the continuous wavelet trans-
form [4, 5]. Afterwards, peak detection and time/amplitud thresholding are used in [6]
for locating the S1 and S2 sounds. Nonetheless, energy is not always constant in the
components of the PCG, since the auscultation focuses, pathologies, breathing and, in
general, some other artifacts produce changes in the time-energy distribution, which in
turn induce changes in the amplitude peaks of the signal. Moreover, the time threshold
or window for locating sounds assumes a priori their length duration, leading to bartered
segmentation, i. e., diastolic-systolic segments instead of the normal systolic-diastolic
heart cycle. In [7], noisy signals are evaluated for a noise-robust detection method by
repeating the signal recording when heart sound characteristics are masked by noise.
However, the heart cycle estimation method implies a high computational cost that can
not be accomplished in near real-time application.

In this paper, a PCG segmentation methodology based on envelope detection is
discussed. The approach takes into consideration the changes in the Heart Rate as a
mitigating factor, aiming to adapt the cardiac cycle length to each segment length. In
the approach, the PCG envelope is computed from the signal time-scale representa-
tion. Then, the cardiac cycle length is estimated from the autocorrelation of 3-second
windowed envelope signal. Lastly, the beginning of the QRS segment and the T-wave
termination, on EKG, are synchronized to the beginning of S1 and S2 sounds, on PCG,
respectively. Since the approach does not required any time or amplitude thresholding,
issues related to the parameter tuning are avoided. Hence, the location and synchroniza-
tion of the synthetic EKG signal ensures a segment-by-segment detection without bar-
tering of the detected locations. Also two noise detection stages are implemented: one
based on predetection of noisy signals, and other by evaluating the time-frequency peri-
odicity similar to [7]. All the used methods are especially chosen to work efficiently in
telemedicine applications. The performance is measured in terms of segmentation accu-
racy, that is, expert observation on whether the heart sound segment is properly located
against the EKG. The paper is then organized as follows, the next section presents a the-
oretical background information. Afterwards, the proposed scheme for segmentation of
PCG signals and state all the parametrization in the methodology is presented. In the
fourth section, results of accuracy segmentation are shown. Finally some conclusions
and future work are given as a summary of the research.
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2 Method

2.1 Noise Predetection

The basic idea behind this stage is to estimate the energy variation along the PSG signal,
x(t), t ∈ Ta. To this end, the Shannon energy is calculated, as follows [8]:

η(t) = −x(t)2 log x(t)2 (1)

So, if the signal is corrupted by noise within a given estimation segment, Ta, its energy
should increase, being noticeably higher that the average energy value, and thus allow-
ing to infer the presence of noise. Signals with strong noise indicators should be either
rejected or recorded again. With this in mind, the average Shanon energy is calculated
as:

η̂ = E {η(t) : ∀t ∈ Ta} (2)

where E {·} stands for expectation operator.

2.2 Time-Frequency Enhancement of PCG Signal

Continuous Wavelet Transform: Wavelet analysis that comes from the basic definition
of Fourier theory is based on the representation of a time-varying signal via a space
domain transformation, that is, to the time-frequency domain, as follows:

X (τ, w) =

∫
Ta

[x (t)w∗ (t− τ)] e−jωtdt (3)

where w is a window function segmenting the signal in portions that are assumed to
be stationary and τ is a time offset. The window function gives the main feature of the
STFT, i.e., the width of the window (called support) that provides the capability of man-
aging the resolution of the representation. Nonetheless, the use of basis functions as well
as the window components in transformation enables to analyze the signal at different
frequency bands with different resolutions, in other words, every spectral component is
not analyzed equally as for the STFT; this approach is then called Wavelet Transform
(WT) that maps a one-dimensional signal into a two-dimensional representation, time
and scale, allowing to give local (at a given resolution) information about the frequen-
cies occurrences. The CWT is then defined as:

W (a, b) =

∫
Ta

x (t)Ψ∗
a,b (t)dt (4)

where ∗ denotes complex conjugation; variables a and b are the scale and translation,
respectively, and compose the new dimension of the WT. The set of Wavelets is then
generated by translations and dilations of a single Wavelet function called the mother
Wavelet, i.e., Ψa,b (t) = a−1/2Ψ ((t− b)/a) .
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Time-Scale Representation of PCG Signal: After obtaining the time-scale signal rep-
resentation, its energy must be computed. To get a smoother energy estimation, instead
of Shannon operator in Eq. (2), the scalogram is used that is defined as follows:

WSCAL (t, a) =
1

ca2
|W (t, a)|2 (5)

where c is a energy normalization parameter such as the averaged energy of the signal
and the averaged energy of the scalogram becomes equal.

Scalogram then provides with the temporal localization of the energy foci, which are
expected to belong to the fundamental components of the signal. Thus, an envelope of
the PCG signal can be obtained with more accuracy, if the PCG is portioned into short
duration frames, when adding the energy concentration over time instants. Therefore,
the following marginal estimation is accomplished:

ε (t) =
∑
∀a

|WSCAL (t, a)|2 (6)

Since all short time duration segments of a long-term PCG signal can be assumed to be
quasi-stationary, the autocorrelation of the envelope of such segments should provide
with information about the periodicity of the PCG signal. Particularly, for a given PSG
signal segment that lasts Ta holding several S1 and S2 events, the autocorrelation that
should show the averaged duration of the heart sound cycle is estimated as follows:

rε,ε (t) =

⎧⎨
⎩

Ta−m−1∑
m=1

ε (n+m) ε (m), m ≥ 0

ε (−m) , m < 0

(7)

Taking into account that for the autocorrelation function both properties hold: periodic-
ity, i.e, r(τ) = r(τ + T ), ∀t ∈ T , and maximum value, max∀τ∈T{r(τ)} = r(0), then
one can infer that r(0) = r(T ), being T the period of the PCG signal that includes both
S1 and S2 events. Since analysis frame in Eq. (7) lasts more that T, that is, Ta > kT,
with k ≈ 3 . . . , 4, then the estimated correlation function will hold 2k equally located
peaks. The peak sequence relates the following matching events:(S1 coincides with
S1)→ (S1-S2)→ (S1-S1)→ (S1-S2)→ ... Therefore, the distance between odd peaks is
the estimated value of T.

It must be quoted that the obtained in Eq. (7) estimation of the segment duration T
directly from the PCG signal avoids the usage of additional information, like the EKG
or the carotid pulse recording.

2.3 Refined Time-Frequency Periodicity Analysis

Estimation of duration T, so far, assumes a high value of signal-to-noise ratio. However,
regularity of peaks is strong affected by the presence of noise. To cope with this issue,
a refined periodicity estimation is provided based on the frequency band analysis of
time-frequency plane.
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In general, the spectrogram, given in (4), is linearly divided in F sub-bands, from
each one of which the corresponding energy envelopes is accomplished by Eq. (6).
Assuming a moderate signal-to-noise ratio, the same peak sequence relating the before
considered matching events takes place, but for each one of the split bands. This paper
considers F = 15. Afterwards, a matrix is constructed with sets of the autocorrelation
envelops gathering 5 neighboring sub-bands at the same time, where for each matrix
the following periodicity value is introduced: ρi = (λi2/λi1)

2, (being λi1 the first and
λi2 - the second singular value). In case of strong periodicity, either relationship should
hold: ρ1 > ρ2 > ρ3 or ρ1 < ρ2 < ρ3, otherwise, one can infer the persistent noise in
signal [7].

2.4 Synchronism for Segmentation

The intrinsic relationship among heart sounds and EKG provides us a tool for detecting
or better determining whether an event in the envelope of the PCG signal is systolic or
not, however, the simultaneous EKG is not always available. Having define the length
of the heart cycle, we generate a synthetic EKG signal of the same length using the
nonlinear model proposed in [9]. The EKG signal starts on the onset of the QRS (that is
the associated beginning of a systolic sound) and has a duration of T . Synchronization
refers then to identification of the first systolic sound over each analyzed PCG part. This
is done when comparing the distance between the R-peaks and the T-wave end in the
synthetic EKG signal with the first and second local maximums of the envelope, that
is, the distance between the R-peak and the first local maxima of ε is minimum when
compared with T if the signal starts some close at systolic sound, if not, we compare
the second local maxima of ε with the end of the T-wave with a tolerance parameter and
determine if it is a diastolic sound, in that case the segmentation is done from the next
local maxima which is supposed to be a systolic sound. The T value is recalculated
for each new heart cycle (the synthetic EKG adopts the new T value), that allows to
adapt the segmentation to the heart rate variability, and therefore, a better segmentation
performance can be achieved.

3 Experimental Setup

The methodology presented in this work is displayed in Fig. 1.

3.1 Database

In this work, the heart sound (Phonocardiogram, PCG) database for murmur detection
of Control and Signal Processing Group at the Universidad Nacional de Colombia -
Manizales is used. This database is composed of 29 patients, each one with 8 record-
ings, namely 4 recordings in the traditional auscultation focuses(aortic, pulmonary, mi-
tral and tricuspid) in diaphragm and bell modes. All recordings have a duration of 20
seconds and present between 10 and 35 heart cycles according to heart rate of each
patient. An electronic stethoscope and the meditron software were used. Signals were
recorded in .wav at sampling frequency 44.1kHz and resolution 16 bit. A labeling
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Fig. 1. Algorithm of the proposed methodology

process was made by a medical team, normal or pathological are the possible classes.
The pathological state corresponds to the existence of abnormal sounds, especially the
appearance of murmurs. Murmur intensity depends on auscultation focus, that is the
principal reason to make the recording over all the 4 foci.

3.2 Measurements

For performance estimation, we use a traditional pan and Tompkins EKG segmenta-
tion algorithm, this is to know the start and end of each heart cycle, given the EKG
and PCG correlation. To validate the method segmentation, the PCG segmentation
should coincide with pan-tompkins results in at least 10%, in other case the part of
signal is considered incorrectly segmented. We use this information to measure the
method true and false detection, as a made in [10]: P̂F = NF /(ND +NF ) and P̂D =
ND/(ND +NM ), where ND is the number true positives, NF false negatives, and Nm

false negatives. Thus, P̂F corresponds with the probability of false detection and P̂D

the probability of detection. Fig. 2 explains the procedure.
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Fig. 2. Explanation of measurements
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3.3 Experiments

Signals are evaluated to identify a strong presence of noise as in Sec.2.1. It is important
because the presence of noise in signals affects the time-frequency behavior. Then, T is
estimated for each signal. The T in some signals might not be calculated, this occurs in
signals with noise even after pre-detection stage. After that, we probe the signals with
other noise detection method, here the periodicity in both frequency and time as in Sec.
2.3 is measured. Signals without periodicity are identified as noisy instances. The last
stage consists in segmenting the clean signals, the measurements described in Sec. 3.2
are calculated with the idea of evaluating the method performance.

4 Results and Discussion

4.1 Predetection Stage

All 232 recorded signals were evaluated, in total 18 signals was detected as noisy sig-
nals for the bell mode and for the Diaphragm mode a total of 20 signals result noisy,
the focus procedence source of noisy signals for each mode are showed in table 1. Note
that several signals from pulmonary focus has been detected as noisy in relation with
the other focuses, this is because of the presence of respiratory sounds. In this focus the
proximity with the lung structures causes masking in heart sounds. In other words, this
experiment shows the high presence of internal noise sources. In noise terms, this fo-
cus is followed by the mitral focus, here exist perturbations associated to lung structure
too, due to the focus localization in the intercostal space. The other focuses are affected
by different noise sources i.e., digestive sounds or human voice. It is important to em-
phasize that owing to the data acquisition conditions all the recordings are affected by
external noise, this can justify the detection of some signals in this stage.

Note that noisy segments show a high energy with respect of the average energy, Fig.
3 exhibit a signal with noisy segments, here is evident the strong noise presence and its
influence in energy values.

4.2 Heart Cycle Duration

For the rest of signals, after noise pre-detection, the heart cycle duration is estimated
as in Sec. 2. For comparison purposes the EKG signal is used to identify the real heart
frequency. In these terms, the estimated heart cycle duration is considered good if it
matches at least in ±10% the real value. As a result of this comparison we find 10

Table 1. Noise Pre-Detection

Focuses of Auscultation

Bell Mode Diaphragm Mode

A M P T A M P T

1 6 8 3 5 5 5 5
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signals where T can not be calculated, this is only a 4.3% of the signals in the original
dataset. The estimation problems occur because of the noise present in these signals that
can not be detected in the predetection stage; the periodicity analysis is an additional
method to identify this kind of noisy signals.
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4.3 Refined Procedure of Computing Time-Frequency Periodicity

After this analysis, 15 signals were identified with periodicity problems. Fig.4 is an
example of noisy signal and its frequency problems, the low homogeneity between
the autocorrelations obtained of the 15 frequency subbands shows it. Nonetheless, in
Fig. 5, it is showed a signal with periodic morphology, note the uniform dynamic along
the signal through all the subbands, namely the peaks appear at the same time.

4.4 Achieved Segmentation

Lastly, after segmenting a total of 1741 heart cycles, according to the EKG reference, the
present method identified 1516 of these heart cycles. It represents a sensibility of 90.88%
and false detection rate of 9.11%, these values are calculated as explained in Sec.2.
These results show the high efficiency of the exposed method and present that a good
detection of noisy signals is a necessary stage for PCG signal segmentation. The present
work shows the goodness of noise detection as a stage in automatic phonocardiography
segmentation, and secondly, the use of segmentation methodologies based on envelope
detection together with the synthetic EKG can improve the good segmentation rates.

Compared with other works, the present method has superior performance, for in-
stance in [3], segmentation results for some kinds of envelope extraction methods are
shown i.e., Shannon envelope shows segmentation efficiency for abnormal cases be-
tween 75.5% and 89.4%, and for normal cases from 65.9% to 78.2%), while Hilbert
envelope shows low segmentation rates. Also this work say that CSCW shows segmen-
tation efficiency between 96.2% and 100% for normal cases and between 72.7% and
88.2% for abnormal cases. In [11], discussed approach gives an accuracy from 88.29%
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to 66.77% for Morlet envelope and Hilbert envelope, respectively. In [8] it is showed an
accuracy of about 95.51%, but taking into account that they use a-priory information as
the average heart rate and it is supposed a continuous hear rate. The presented method
is robust to heart rate variability and even talking about patients with some arrhythmia
it is possible to carry out a proper segmentation.

5 Conclusions and Future Work

An efficient segmentation methodology for PCG signals is presented that allows seg-
mentation accuracy of up to 90% in most of the database registers. Method performance
show that cycle heart length estimation by autocorrelation and synchronization with the
synthetic EKG provides a good segmentation strategy with the joint analysis of the en-
velope of the original signal, it is important to note that the proposed method is chosen
to work in telemedicine environments. This can enhance the traditional methods of PCG
segmentation ensuring a correct length calculation and S1-S2 detection.

As regards the telemedicine application, it is important to note that the noise con-
ditions for heart sound acquisition can not be adequate, for that reason it is necessary
to implement strategies that contribute to identify the quality of recorded signals, for
instance, the periodicity and energy methodologies used in the present work are a good
response to this problem. The use of an adaptive synthetic EKG from a T estimation
in each heart cycle segment, allows the segmentation even in patients with a large heart
rate variability.

The low accuracy rates presented along the state of the art are understood, because
the noisy signals diminish the methodologies performance, that as a result of the enve-
lope distortions. Nevertheless, it is important to work in segmentation methods based
on envelope, because its simplicity enables it to work in telemedicine applications. De-
spite the noise analysis, it is important to use a refined acquisition protocol, that allows
to identify if it exists acceptable conditions for recording signals, that is, an environment
free of noise and to get the lowest quantity of excluded signals.

Finally as a future work, we propose to find better methods to estimate the heart cy-
cle duration, because a better evaluation of time-frequency signal periodicity is highly
dependant on this, furthermore, it can improve the segmentation performance by de-
creasing the false detection rate. Also it is important to improve the synchronization
methodology, that because there exist signals with attenuated sounds, that produce
losses of peaks, which also decreases the accuracy rates.
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