Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/48098
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Muñoz, John Edison | en_US |
dc.contributor.author | Gouveia, Elvio Rubio | en_US |
dc.contributor.author | Cameirão, Mónica S. | en_US |
dc.contributor.author | Badia, Sergi Bermúdez I. | en_US |
dc.date.accessioned | 2018-11-23T18:56:11Z | - |
dc.date.available | 2018-11-23T18:56:11Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.issn | 1380-7501 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/48098 | - |
dc.description.abstract | The exponential increase of wearable health-tracking technologies offers new possibilities but also poses new challenges in signal processing to enable fitness monitoring through multimodal physiological recordings. Although there are several software tools used for post-processing in physiological computing applications, limitations in the analysis, incorporating signals from multiple sources, integrating contextual information and providing information visualization tools prevent a widespread use of this technology. To address these issues, we introduce PhysioLab, a multimodal processing Matlab tool for the data analysis of Electromyography (EMG), Electrocardiography (ECG) and Electrodermal Activity (EDA). The software is intended to facilitate the processing and comprehension of multimodal physiological data with the aim of assessing fitness in several domains. A unique feature of PhysioLab is that is informed by normative data grouped by age and sex, allowing contextualization of data based on users’ demographics. Besides signal processing, PhysioLab includes a novel approach to multivariable data visualization with the aim of simplifying interpretation by non-experts users. The system computes a set of ECG features based on heart rate variability analysis, EMG parameters to quantify force and fatigue levels, and galvanic skin level/responses from EDA signals. Furthermore, PhysioLab provides compatibility with data from multiple low-cost wearable sensors. We conducted an experiment with 17 community-dwelling older adults (64.5 ± 6.4) to assess the feasibility of the tool in characterizing cardiorespiratory profiles during physical activity. Correlation analyses and regression models showed significant interactions between physiology and fitness evaluations. Our results suggest novel ways that physiological parameters could be effectively used to complement traditional fitness assessment. | en_US |
dc.language | eng | en_US |
dc.publisher | 1380-7501 | |
dc.relation.ispartof | Multimedia Tools and Applications | en_US |
dc.source | Multimedia Tools and Applications[ISSN 1380-7501], n. 77, p. 11521-11546 | en_US |
dc.subject | 32 Ciencias médicas | en_US |
dc.subject | 320107 Geriatría | en_US |
dc.subject.other | Physiological computing | en_US |
dc.subject.other | Electrocardiography | en_US |
dc.subject.other | Electromyography | en_US |
dc.subject.other | Electrodermal activity | en_US |
dc.subject.other | Cardiorespiratory fitness | en_US |
dc.subject.other | Elderly | en_US |
dc.title | PhysioLab - a multivariate physiological computing toolbox for ECG, EMG and EDA signals: a case of study of cardiorespiratory fitness assessment in the elderly population | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11042-017-5069-z | en_US |
dc.identifier.scopus | 85027837641 | - |
dc.contributor.authorscopusid | 56645651500 | - |
dc.contributor.authorscopusid | 36637395800 | - |
dc.contributor.authorscopusid | 21740694600 | - |
dc.contributor.authorscopusid | 6506360007 | - |
dc.description.lastpage | 11546 | en_US |
dc.description.firstpage | 11521 | en_US |
dc.investigacion | Ciencias de la Salud | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 26 | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-MED | en_US |
dc.description.sjr | 0,335 | |
dc.description.jcr | 2,101 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUIBS: Tecnología Médica y Audiovisual | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.orcid | 0000-0003-4452-0414 | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.fullName | Bermúdez I Badía,Sergi | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
3
checked on Mar 7, 2020
WEB OF SCIENCETM
Citations
13
checked on Nov 17, 2024
Page view(s)
110
checked on Jul 27, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.