Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/48098
DC FieldValueLanguage
dc.contributor.authorMuñoz, John Edisonen_US
dc.contributor.authorGouveia, Elvio Rubioen_US
dc.contributor.authorCameirão, Mónica S.en_US
dc.contributor.authorBadia, Sergi Bermúdez I.en_US
dc.date.accessioned2018-11-23T18:56:11Z-
dc.date.available2018-11-23T18:56:11Z-
dc.date.issued2018en_US
dc.identifier.issn1380-7501en_US
dc.identifier.urihttp://hdl.handle.net/10553/48098-
dc.description.abstractThe exponential increase of wearable health-tracking technologies offers new possibilities but also poses new challenges in signal processing to enable fitness monitoring through multimodal physiological recordings. Although there are several software tools used for post-processing in physiological computing applications, limitations in the analysis, incorporating signals from multiple sources, integrating contextual information and providing information visualization tools prevent a widespread use of this technology. To address these issues, we introduce PhysioLab, a multimodal processing Matlab tool for the data analysis of Electromyography (EMG), Electrocardiography (ECG) and Electrodermal Activity (EDA). The software is intended to facilitate the processing and comprehension of multimodal physiological data with the aim of assessing fitness in several domains. A unique feature of PhysioLab is that is informed by normative data grouped by age and sex, allowing contextualization of data based on users’ demographics. Besides signal processing, PhysioLab includes a novel approach to multivariable data visualization with the aim of simplifying interpretation by non-experts users. The system computes a set of ECG features based on heart rate variability analysis, EMG parameters to quantify force and fatigue levels, and galvanic skin level/responses from EDA signals. Furthermore, PhysioLab provides compatibility with data from multiple low-cost wearable sensors. We conducted an experiment with 17 community-dwelling older adults (64.5 ± 6.4) to assess the feasibility of the tool in characterizing cardiorespiratory profiles during physical activity. Correlation analyses and regression models showed significant interactions between physiology and fitness evaluations. Our results suggest novel ways that physiological parameters could be effectively used to complement traditional fitness assessment.en_US
dc.languageengen_US
dc.publisher1380-7501
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.sourceMultimedia Tools and Applications[ISSN 1380-7501], n. 77, p. 11521-11546en_US
dc.subject32 Ciencias médicasen_US
dc.subject320107 Geriatríaen_US
dc.subject.otherPhysiological computingen_US
dc.subject.otherElectrocardiographyen_US
dc.subject.otherElectromyographyen_US
dc.subject.otherElectrodermal activityen_US
dc.subject.otherCardiorespiratory fitnessen_US
dc.subject.otherElderlyen_US
dc.titlePhysioLab - a multivariate physiological computing toolbox for ECG, EMG and EDA signals: a case of study of cardiorespiratory fitness assessment in the elderly populationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-017-5069-zen_US
dc.identifier.scopus85027837641-
dc.contributor.authorscopusid56645651500-
dc.contributor.authorscopusid36637395800-
dc.contributor.authorscopusid21740694600-
dc.contributor.authorscopusid6506360007-
dc.description.lastpage11546en_US
dc.description.firstpage11521en_US
dc.investigacionCiencias de la Saluden_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages26en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr0,335
dc.description.jcr2,101
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0003-4452-0414-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameBermúdez I Badía,Sergi-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

3
checked on Mar 7, 2020

WEB OF SCIENCETM
Citations

13
checked on Nov 17, 2024

Page view(s)

110
checked on Jul 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.