Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48098
Título: PhysioLab - a multivariate physiological computing toolbox for ECG, EMG and EDA signals: a case of study of cardiorespiratory fitness assessment in the elderly population
Autores/as: Muñoz, John Edison
Gouveia, Elvio Rubio
Cameirão, Mónica S.
Badia, Sergi Bermúdez I. 
Clasificación UNESCO: 32 Ciencias médicas
320107 Geriatría
Palabras clave: Physiological computing
Electrocardiography
Electromyography
Electrodermal activity
Cardiorespiratory fitness, et al.
Fecha de publicación: 2018
Editor/a: 1380-7501
Publicación seriada: Multimedia Tools and Applications 
Resumen: The exponential increase of wearable health-tracking technologies offers new possibilities but also poses new challenges in signal processing to enable fitness monitoring through multimodal physiological recordings. Although there are several software tools used for post-processing in physiological computing applications, limitations in the analysis, incorporating signals from multiple sources, integrating contextual information and providing information visualization tools prevent a widespread use of this technology. To address these issues, we introduce PhysioLab, a multimodal processing Matlab tool for the data analysis of Electromyography (EMG), Electrocardiography (ECG) and Electrodermal Activity (EDA). The software is intended to facilitate the processing and comprehension of multimodal physiological data with the aim of assessing fitness in several domains. A unique feature of PhysioLab is that is informed by normative data grouped by age and sex, allowing contextualization of data based on users’ demographics. Besides signal processing, PhysioLab includes a novel approach to multivariable data visualization with the aim of simplifying interpretation by non-experts users. The system computes a set of ECG features based on heart rate variability analysis, EMG parameters to quantify force and fatigue levels, and galvanic skin level/responses from EDA signals. Furthermore, PhysioLab provides compatibility with data from multiple low-cost wearable sensors. We conducted an experiment with 17 community-dwelling older adults (64.5 ± 6.4) to assess the feasibility of the tool in characterizing cardiorespiratory profiles during physical activity. Correlation analyses and regression models showed significant interactions between physiology and fitness evaluations. Our results suggest novel ways that physiological parameters could be effectively used to complement traditional fitness assessment.
URI: http://hdl.handle.net/10553/48098
ISSN: 1380-7501
DOI: 10.1007/s11042-017-5069-z
Fuente: Multimedia Tools and Applications[ISSN 1380-7501], n. 77, p. 11521-11546
Colección:Artículos
Vista completa

Citas SCOPUSTM   

3
actualizado el 07-mar-2020

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 17-nov-2024

Visitas

110
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.