Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/47445
DC FieldValueLanguage
dc.contributor.authorWestin, Carl Fredriken_US
dc.contributor.authorMartin-Fernandez, Marcosen_US
dc.contributor.authorAlberola-Lopez, Carlosen_US
dc.contributor.authorRuiz-Alzola, Juanen_US
dc.contributor.authorKnutsson, Hansen_US
dc.date.accessioned2018-11-23T13:37:37Z-
dc.date.available2018-11-23T13:37:37Z-
dc.date.issued2006en_US
dc.identifier.issn1612-3786en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/47445-
dc.description.abstractThis chapter presents two techniques for regularization of tensor fields. We first present a nonlinear filtering technique based on normalized convolution, a general method for filtering missing and uncertain data. We describe how the signal certainty function can be constructed to depend on locally derived certainty information and further combined with a spatially dependent certainty field. This results in reduced mixing between regions of different signal characteristics, and increased robustness to outliers, compared to the standard approach of normalized convolution using only a spatial certainty field. We contrast this deterministic approach with a stochastic technique based on a multivariate Gaussian signal model in a Bayesian framework. This method uses a Markov random field approach with a 3D neighborhood system for modeling spatial interactions between the tensors locally. Experiments both on synthetic and real data are presented. The driving tensor application for this work throughout the chapter is the filtering of diffusion tensor MRI data.en_US
dc.languageengen_US
dc.relation.ispartofMathematics and Visualizationen_US
dc.sourceMathematics and Visualization[ISSN 1612-3786], p. 381-398en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherProbability Density Functionen_US
dc.subject.otherFractional Anisotropyen_US
dc.subject.otherMinimum Mean Square Erroren_US
dc.subject.otherSimulated Annealing Algorithmen_US
dc.subject.otherMinimum Mean Square Error Estimationen_US
dc.titleTensor field regularization using normalized convolution and Markov random fields in a Bayesian frameworken_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.1007/3-540-31272-2_24en_US
dc.identifier.scopus84872861497-
dc.contributor.authorscopusid35477140400-
dc.contributor.authorscopusid57201814237-
dc.contributor.authorscopusid55999734500-
dc.contributor.authorscopusid56614041800-
dc.contributor.authorscopusid7003813464-
dc.description.lastpage398en_US
dc.description.firstpage381en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Patología y Tecnología médica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-3545-2328-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameRuiz Alzola, Juan Bautista-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (2,8 MB)
Show simple item record

SCOPUSTM   
Citations

4
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

2
checked on Mar 30, 2025

Page view(s)

59
checked on Aug 10, 2024

Download(s)

31
checked on Aug 10, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.