Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47347
Campo DC Valoridioma
dc.contributor.authorGarcía-Pedrero, Angelen_US
dc.contributor.authorLillo-Saavedra, Mario F.en_US
dc.contributor.authorRodríguez-Esparragón, Dionisioen_US
dc.contributor.authorMenasalvas, Ernestinaen_US
dc.contributor.authorGonzalo-Martin, Consueloen_US
dc.date.accessioned2018-11-23T12:50:03Z-
dc.date.available2018-11-23T12:50:03Z-
dc.date.issued2017en_US
dc.identifier.isbn9781510613188en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/47347-
dc.description.abstractEfficient water management in agriculture requires an accurate estimation of evapotranspiration (ET). There are available several balance energy surface models that provide a daily ET estimation (ETd) spatially and temporarily distributed for different crops over wide areas. These models need infrared thermal spectral band (gathered from remotely sensors) to estimate sensible heat flux from the surface temperature. However, this spectral band is not available for most current operational remote sensors. Even though the good results provided by machine learning (ML) methods in many different areas, few works have applied these approaches for forecasting distributed ETd on space and time when aforementioned information is missing. However, these methods do not exploit the land surface characteristics and the relationships among land covers producing estimation errors. In this work, we have developed and evaluated a methodology that provides spatial distributed estimates of ETd without thermal information by means of Convolutional Neural Networks.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 10427 (2278321)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherEnergy-Balanceen_US
dc.subject.otherRemoteen_US
dc.subject.otherModelen_US
dc.subject.otherNdvien_US
dc.subject.otherConvolutional Neural Networken_US
dc.subject.otherEvapotranspiration Estimationen_US
dc.subject.otherMetricen_US
dc.titleConvolutional Neural Networks for estimating spatially-distributed evapotranspirationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceConference on Image and Signal Processing for Remote Sensing XXIIIen_US
dc.identifier.doi10.1117/12.2278321en_US
dc.identifier.scopus85041058294-
dc.identifier.isi000425842500019-
dc.contributor.authorscopusid36056581100-
dc.contributor.authorscopusid36561411500-
dc.contributor.authorscopusid8349763700-
dc.contributor.authorscopusid56422496000-
dc.contributor.authorscopusid6602242147-
dc.identifier.eissn1996-756X-
dc.identifier.issue2278321-
dc.relation.volume10427en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid2163773-
dc.contributor.daisngid1398100-
dc.contributor.daisngid1401633-
dc.contributor.daisngid3305398-
dc.contributor.daisngid511665-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Garcia-Pedrero, A-
dc.contributor.wosstandardWOS:Gonzalo-Martin, C-
dc.contributor.wosstandardWOS:Lillo-Saavedra, MF-
dc.contributor.wosstandardWOS:Rodriguez-Esparragon, D-
dc.contributor.wosstandardWOS:Menasalvas, E-
dc.date.coverdate2017en_US
dc.identifier.conferenceidevents121084-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate11-09-2017-
crisitem.event.eventsenddate13-09-2017-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4542-2501-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameRodríguez Esparragón, Dionisio-
crisitem.author.fullNameGonzalo Martin,Consuelo-
Colección:Actas de congresos
miniatura
Adobe PDF (12,32 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.