Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47347
Título: | Convolutional Neural Networks for estimating spatially-distributed evapotranspiration | Autores/as: | García-Pedrero, Angel Lillo-Saavedra, Mario F. Rodríguez-Esparragón, Dionisio Menasalvas, Ernestina Gonzalo-Martin, Consuelo |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Energy-Balance Remote Model Ndvi Convolutional Neural Network, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | Proceedings of SPIE - The International Society for Optical Engineering | Conferencia: | Conference on Image and Signal Processing for Remote Sensing XXIII | Resumen: | Efficient water management in agriculture requires an accurate estimation of evapotranspiration (ET). There are available several balance energy surface models that provide a daily ET estimation (ETd) spatially and temporarily distributed for different crops over wide areas. These models need infrared thermal spectral band (gathered from remotely sensors) to estimate sensible heat flux from the surface temperature. However, this spectral band is not available for most current operational remote sensors. Even though the good results provided by machine learning (ML) methods in many different areas, few works have applied these approaches for forecasting distributed ETd on space and time when aforementioned information is missing. However, these methods do not exploit the land surface characteristics and the relationships among land covers producing estimation errors. In this work, we have developed and evaluated a methodology that provides spatial distributed estimates of ETd without thermal information by means of Convolutional Neural Networks. | URI: | http://hdl.handle.net/10553/47347 | ISBN: | 9781510613188 | ISSN: | 0277-786X | DOI: | 10.1117/12.2278321 | Fuente: | Proceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 10427 (2278321) |
Colección: | Actas de congresos |
Citas SCOPUSTM
6
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
142
actualizado el 04-may-2024
Descargas
349
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.