Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/47347
DC Field | Value | Language |
---|---|---|
dc.contributor.author | García-Pedrero, Angel | en_US |
dc.contributor.author | Lillo-Saavedra, Mario F. | en_US |
dc.contributor.author | Rodríguez-Esparragón, Dionisio | en_US |
dc.contributor.author | Menasalvas, Ernestina | en_US |
dc.contributor.author | Gonzalo-Martin, Consuelo | en_US |
dc.date.accessioned | 2018-11-23T12:50:03Z | - |
dc.date.available | 2018-11-23T12:50:03Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 9781510613188 | en_US |
dc.identifier.issn | 0277-786X | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/47347 | - |
dc.description.abstract | Efficient water management in agriculture requires an accurate estimation of evapotranspiration (ET). There are available several balance energy surface models that provide a daily ET estimation (ETd) spatially and temporarily distributed for different crops over wide areas. These models need infrared thermal spectral band (gathered from remotely sensors) to estimate sensible heat flux from the surface temperature. However, this spectral band is not available for most current operational remote sensors. Even though the good results provided by machine learning (ML) methods in many different areas, few works have applied these approaches for forecasting distributed ETd on space and time when aforementioned information is missing. However, these methods do not exploit the land surface characteristics and the relationships among land covers producing estimation errors. In this work, we have developed and evaluated a methodology that provides spatial distributed estimates of ETd without thermal information by means of Convolutional Neural Networks. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Proceedings of SPIE - The International Society for Optical Engineering | en_US |
dc.source | Proceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 10427 (2278321) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Energy-Balance | en_US |
dc.subject.other | Remote | en_US |
dc.subject.other | Model | en_US |
dc.subject.other | Ndvi | en_US |
dc.subject.other | Convolutional Neural Network | en_US |
dc.subject.other | Evapotranspiration Estimation | en_US |
dc.subject.other | Metric | en_US |
dc.title | Convolutional Neural Networks for estimating spatially-distributed evapotranspiration | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | Conference on Image and Signal Processing for Remote Sensing XXIII | en_US |
dc.identifier.doi | 10.1117/12.2278321 | en_US |
dc.identifier.scopus | 85041058294 | - |
dc.identifier.isi | 000425842500019 | - |
dc.contributor.authorscopusid | 36056581100 | - |
dc.contributor.authorscopusid | 36561411500 | - |
dc.contributor.authorscopusid | 8349763700 | - |
dc.contributor.authorscopusid | 56422496000 | - |
dc.contributor.authorscopusid | 6602242147 | - |
dc.identifier.eissn | 1996-756X | - |
dc.identifier.issue | 2278321 | - |
dc.relation.volume | 10427 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 2163773 | - |
dc.contributor.daisngid | 1398100 | - |
dc.contributor.daisngid | 1401633 | - |
dc.contributor.daisngid | 3305398 | - |
dc.contributor.daisngid | 511665 | - |
dc.description.numberofpages | 9 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Garcia-Pedrero, A | - |
dc.contributor.wosstandard | WOS:Gonzalo-Martin, C | - |
dc.contributor.wosstandard | WOS:Lillo-Saavedra, MF | - |
dc.contributor.wosstandard | WOS:Rodriguez-Esparragon, D | - |
dc.contributor.wosstandard | WOS:Menasalvas, E | - |
dc.date.coverdate | 2017 | en_US |
dc.identifier.conferenceid | events121084 | - |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.event.eventsstartdate | 11-09-2017 | - |
crisitem.event.eventsenddate | 13-09-2017 | - |
crisitem.author.dept | GIR IOCAG: Procesado de Imágenes y Teledetección | - |
crisitem.author.dept | IU de Oceanografía y Cambio Global | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4542-2501 | - |
crisitem.author.parentorg | IU de Oceanografía y Cambio Global | - |
crisitem.author.fullName | Rodríguez Esparragón, Dionisio | - |
crisitem.author.fullName | Gonzalo Martin,Consuelo | - |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.