Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47327
Campo DC Valoridioma
dc.contributor.authorCarta, José A.en_US
dc.contributor.authorCabrera, Pedroen_US
dc.contributor.authorMatías, José M.en_US
dc.contributor.authorCastellano, Fernandoen_US
dc.date.accessioned2018-11-23T12:39:26Z-
dc.date.available2018-11-23T12:39:26Z-
dc.date.issued2015en_US
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://hdl.handle.net/10553/47327-
dc.description.abstractRecent studies in the field of renewable energies, and specifically in wind resource prediction, have shown growing interest in proposals for Measure-Correlate-Predict (MCP) methods which simultaneously use data recorded at various reference weather stations. In this context, the use of a high number of reference stations may result in overspecification with its associated negative effects. These include, amongst others, an increase in the estimation error and/or overfitting which could be detrimental to the generalisation capacity of the model when handling new data (prediction).This paper analyses the benefits of feature selection for use with Artificial Neural Network (ANN) techniques with a multilayer perceptron (MLP) structure when the ANNs are used as MCP methods to predict mean hourly wind speeds at a target site. The features considered in this study were the mean hourly wind speeds and directions recorded in 2003 and 2004 at five weather stations in the Canary Archipelago (Spain).The two feature selection techniques considered in the analysis were the Correlation Feature Selection (CFS), which is a correlation-based filter approach (FA), and an MLP-based wrapper approach (WA). The metrics used to compare the results were the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the index of agreement (IoA).Evaluation of the mean errors obtained in the 10-fold cross-validation tests for the year used to represent the short-term wind data period resulted in several conclusions. These included, notably, that the WA gave lower mean errors than the FA in 100% of the cases analysed independently of the metric employed. However, the FA resulted in a significant reduction in computational load and considerable enhancement of model interpretability. When very good correlation coefficients were obtained between the target and reference stations, no significant statistical difference was observed at 5% level between the three models (FA, WA and the models constructed with all the variables) in most of the cases analysed.en_US
dc.languageengen_US
dc.relation.ispartofApplied Energyen_US
dc.sourceApplied Energy [ISSN 0306-2619], v. 158, p. 490-507, (Noviembre 2015)en_US
dc.subject3322 Tecnología energéticaen_US
dc.subject.otherWind poweren_US
dc.subject.otherNeural networksen_US
dc.subject.otherWeather information servicesen_US
dc.titleComparison of feature selection methods using ANNs in MCP-wind speed methods. A case studyen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apenergy.2015.08.102en_US
dc.identifier.scopus84941050919-
dc.identifier.isi000364880800042-
dc.contributor.authorscopusid7003652043-
dc.contributor.authorscopusid56331565000-
dc.contributor.authorscopusid8058596200-
dc.contributor.authorscopusid57211016243-
dc.contributor.authorscopusid15748181300-
dc.description.lastpage507en_US
dc.description.firstpage490en_US
dc.relation.volume158en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1198474-
dc.contributor.daisngid2885442-
dc.contributor.daisngid30320309-
dc.contributor.daisngid4314940-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Carta, JA-
dc.contributor.wosstandardWOS:Cabrera, P-
dc.contributor.wosstandardWOS:Matias, JM-
dc.contributor.wosstandardWOS:Castellano, F-
dc.date.coverdateNoviembre 2015en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr2,912
dc.description.jcr5,746
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.orcid0000-0001-9707-6375-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCarta González, José Antonio-
crisitem.author.fullNameCabrera Santana, Pedro Jesús-
Colección:Artículos
miniatura
Adobe PDF (9,18 MB)
Vista resumida

Citas SCOPUSTM   

36
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

30
actualizado el 17-nov-2024

Visitas

142
actualizado el 24-ago-2024

Descargas

313
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.