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� An analysis is carried out of the benefits of feature selection in MCP methods which use ANNs.
� The wrapper approach (WA) generated lower mean errors than the filter approach (FA).
� No significant statistical difference was observed between the WA and the FA in certain cases.
� The FA generated models somewhat simpler and more interpretable than the WA.
� The WA displayed better predictive capacity than the FA, but is more computationally intensive.
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Recent studies in the field of renewable energies, and specifically in wind resource prediction, have
shown growing interest in proposals for Measure–Correlate–Predict (MCP) methods which simultane-
ously use data recorded at various reference weather stations. In this context, the use of a high number
of reference stations may result in overspecification with its associated negative effects. These include,
amongst others, an increase in the estimation error and/or overfitting which could be detrimental to
the generalisation capacity of the model when handling new data (prediction).
This paper analyses the benefits of feature selection for use with Artificial Neural Network (ANN) tech-

niques with a multilayer perceptron (MLP) structure when the ANNs are used as MCP methods to predict
mean hourly wind speeds at a target site. The features considered in this study were the mean hourly
wind speeds and directions recorded in 2003 and 2004 at five weather stations in the Canary
Archipelago (Spain).
The two feature selection techniques considered in the analysis were the Correlation Feature Selection

(CFS), which is a correlation-based filter approach (FA), and an MLP-based wrapper approach (WA). The
metrics used to compare the results were the mean absolute error (MAE), the mean absolute percentage
error (MAPE) and the index of agreement (IoA).
Evaluation of the mean errors obtained in the 10-fold cross-validation tests for the year used to repre-

sent the short-term wind data period resulted in several conclusions. These included, notably, that the
WA gave lower mean errors than the FA in 100% of the cases analysed independently of the metric
employed. However, the FA resulted in a significant reduction in computational load and considerable
enhancement of model interpretability. When very good correlation coefficients were obtained between
the target and reference stations, no significant statistical difference was observed at 5% level between
the three models (FA, WA and the models constructed with all the variables) in most of the cases
analysed.
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Nomenclature

A parameter defined by Eq. (2)
AEMET State Meteorological Agency of the Ministry of the

Environment and Rural and Marine Environs of the
Spanish Government (Spanish initials)

ANOVA analysis of variance
ANNs artificial neural networks
agl above ground level
B parameter defined by Eq. (2)
BH Benjamini and Hochberg step-up procedure [49]
C parameter defined by Eq. (2)
CCC Circular Correlation Coefficient, Eq. (1)
CFS Correlation Feature Selection
CL circular-linear correlation coefficient, Eq. (3)
CPU Central Processing Unit
D, D0 variables that represent wind direction (Degree)
D1; . . . ;D5 variables that represent wind directions of weather

stations no. 1, . . . , 5, respectively
E parameter defined by Eq. (2)
e vector which contains the estimated values of the wind

speed (m/s) at a target site, Eqs. (5)–(7)
F parameter defined by Eq. (2)
FA filter approach
FA-1, FA-2 used to mark the itinerary followed in the use of the

filter approach (FA), Fig. 7
FS full feature set (no feature selection).
G parameter defined by Eq. (2)
GNU recursive acronym which stands for GNU is Not Unix
H parameter defined by Eq. (2)
H0 null hypothesis, Eq. (8)
H1 alternative hypothesis, Eq. (8)
IoA index of agreement, Eq. (7)
ITC Technological Institute of the Canary Islands (Spanish

initials)

MAE mean absolute error, Eq. (5) (m/s)
MAPE mean absolute percentage error, Eq. (6) (%)
MCP Measure–Correlate–Predict
MLP multilayer perceptron
n number of data, Eqs. (1), (2), (5), (6) and (7).
ncv number of errors obtained in 10-fold cross-validation.
N number of reference stations, Fig. 5
o vector which contains the observed wind speed values

(m/s) at a target site, Eqs. (5)–(7)
�o Arithmetic mean in m/s of observed wind speed values,

Eq. (7)
p-value Is the estimated probability of rejecting the null hypoth-

esis (H0) of a study question when that null hypothesis
is true [50]

Q parameter defined by Eq. (2)
q number of neurons in the hidden layer of the neural

network, Fig. 5
rcs correlation coefficient, Eq. (4)
rvc correlation coefficient, Eq. (4)
rvs correlation coefficient, Eq. (4)
S variable representing wind speed (m/s)
S1; . . . ; S5 variables which represent the wind speeds of weather

stations number 1, . . . , 5, respectively
WA wrapper approach
WA-1, WA-2 Used to mark the itinerary followed in the use of

the wrapper approach (WA), Fig. 7
Weka Waikato Environment for Knowledge Analysis
WS weather station
WS-k weather station identified with the number k

Greek letters
a level of statistical significance
li; lj population means of models i and j, Eq. (8)
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1. Introduction

1.1. Background

The feasibility of implementing a wind energy conversion sys-
tem at a target site depends fundamentally on the wind regime
at the site in question [1–3]. In view of this, and as a consequence
of the interannual variability of wind speed, long series of wind
data are required [1,4–9] to enable estimation of the mean charac-
teristics of the wind resource over the useful life of a wind project
with the least degree of uncertainty possible. If only short series of
wind data are available for a particular target site, a common way
of at least partially overcoming this drawback is the use of meth-
ods which attempt to estimate the mean long-term characteristics
of the wind resource at the target site by using long historical wind
data series recorded at nearby weather stations (WSs). Among such
methods are those widely known as MCPs (Measure–Correlate–Pre
dict) [10].

As reported by Carta et al. [10], a considerable number of MCPs
have been proposed in the scientific literature and new techniques
continue to be formulated [11,12]. Most of these MCP methods use
a single reference WS and employ linear equations [13] or proba-
bilistic equations [14]. The parameters of these models are deter-
mined with wind data series recorded in a concurrent short-term
time period at the target and reference sites and the equations or
functions are then used to estimate the long-term wind data at
the target site [10].
However, a considerable number of authors [2,12,15–23]
argue that it may be beneficial to use several as opposed to a sin-
gle reference station, as the use of various stations may be able to
capture details of the wind resource at a target site that would
otherwise have been missed if only one reference station had
been used. A variety of data mining techniques have been pro-
posed in this respect which allow simultaneous use of the infor-
mation provided by a number of reference stations. Perhaps the
most notable of the proposed techniques are those based on
biologically-inspired algorithms, the so-called artificial neural
networks or ANNs [24,25], and more specifically multilayer per-
ceptron (MLP) neural networks [3,11,12,18–23,26,27]. Lopez
et al. [21] and Velázquez et al. [22] highlight the importance of
using the wind speeds and directions of the reference stations
as features, especially in sites of complex terrain. Though
Velázquez et al. [22] reported in their studies that predictive
capacity tended to increase with the number of reference sta-
tions, they also noted that not all the reference stations that were
used improved the results. However, these authors did not con-
template the possibility of reducing the number of features,
including only the variables (speed or direction) of each reference
station that might really be relevant. Aside from this, Brower [2],
in reference to linear regression models, warns that the use of a
large number of reference stations, especially if they are strongly
correlated, may give rise to model overspecification, which could
be detrimental to the generalisation capacity of the model when
handling new data (prediction).
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1.2. Aim of this paper

As previously stated, a growing trend has been noted in propos-
als that employ MCP methods, which simultaneously use as refer-
ence variables wind speed and direction data series registered at
various WSs, for long-term wind speed estimation of a target site.
However, despite an exhaustive search of the literature, it appears
that no proposals have been made to use, within the general
framework of strategies of MCP methods, feature selection tech-
niques. According to the bibliography consulted, MCP methods
which propose the use of multiple reference WSs employ all the
available features without taking into consideration the pros and
cons that may be associated with such an action strategy.
Accordingly, one of the aims of the present study is to determine
the benefits, if any, of feature selection [28–31] when using neural
networks as MCP methods. The idea behind this is to offer users
and designers of MCP methods a strategy that provides them with
greater information and the possibility of improving the use of
such methods. Users of traditional MCP methods, which employ
a single reference station, tend to turn to rules of thumb when
selecting this reference station [10]. Such rules are based on the
degree of linear correlation that exists between the wind speeds
of the target station and those of the reference station. However,
no rules of thumb have been proposed for the selection of various
reference stations. In view of this, the present paper will consider a
specific MCP problem which onsists of predicting the mean hourly
wind speeds at different target sites using the wind speeds and
directions from four reference WSs in the Canary Archipelago
(Spain) as features. Given the different levels of correlation
observed between the features of the WSs used (see Section 2.1),
this study also aims to outline rules of thumb that can serve as
guidelines when choosing the most appropriate feature selection
technique for use in MCP methods using multiple WSs.

In view of their popularity in this type of problem, the ANNs
used in this study are MLP neural networks with a hidden layer
and a linear-type output layer in accordance with the continuous
nature of the wind speed variable.

ANNs are a group ofmachine learning techniques which could fit
into the category of non-parametric statistical techniques given
their capacity to approximate any continuous function [32]. In con-
sequence, their flexibility is greater than that of parametric tech-
niques, but interpretability is lower and there is also a higher
risk of overfitting.

The essential question that lies behind the objectives of this
work is whether MLP algorithms are sufficiently capable by them-
selves of carrying out the necessary selection of features in an MCP
context, or whether it is necessary or at the very least beneficial to
use selection techniques to complement the MLP algorithms. Three
model types are considered in this study. One involves no feature
selection (FS – Full Set) and the other two are commonly used fea-
ture selection strategies: a filter approach (FA) based on correla-
tion, the so-called Correlation Feature Selection (CFS) [33–35],
and a wrapper approach (WA) based on MLPs [29,33]. This study
aims to compare and determine which of the above model types
gives the best results of the following metrics: the mean absolute
error (MAE), the mean absolute percentage error (MAPE) and a
refined version of Willmott’s dimensionless index of agreement
(IoA) [36]. Importantly, this study aims to offer the strongest pos-
sible grounds for its conclusions in order to avoid having to treat
purely circumstantial differences between the results of the differ-
ent methods as being due to important structural mechanisms
when, in fact, they were simply caused by the randomness of the
samples. Therefore, the comparison in this study will not only
involve determination, for the particular sample used, of the differ-
ences between the results obtained with the different models
according to the various metrics in a 10-fold cross-validation
process [33]. An additional comparison will involve statistical
hypothesis testing to determine whether there is a significant
statistical difference (at 5% level) between the results obtained
with the three strategies considered (FA, WA and FS).

The article is structured as follows: the following section
describes the materials, including the data sample, the MLP models
used and the feature selection techniques that are compared. The
methodology employed for the comparison study is then
described. Next, the results that were obtained are presented and
analysed and, finally, a description is given of the conclusions
drawn from the study.
2. Materials

2.1. Meteorological data used

The meteorological data used in this paper (mean hourly wind
speeds and directions) were recorded at fiveWSs installed on three
of the seven major islands that make up the Canary Archipelago
(Spain) (Fig. 1).

The wind speeds were captured using rotating cup type
anemometers situated on masts at 10 m above ground level (agl)
located on the coasts of the islands (Fig. 1). The data series used
were recorded during the years 2003 and 2004 and were provided
by the Technological Institute of the Canary Islands (Spanish ini-
tials: ITC)1 and by the State Meteorological Agency (Spanish initials:
AEMET) of the Ministry of Environment and Rural and Marine Affairs
of the Government of Spain.

The codes assigned to each WS are shown in the first column of
Table 1. The ITC provided the data series from WS-1 and WS-2 and
AEMET the data series from WS-3, WS-4 and WS-5. The geograph-
ical coordinates of each station (latitude, longitude and altitude)
are also shown in Table 1 along with the annual mean and stan-
dard deviation of the wind speed.

The predominant wind regime in the Canary Islands is that of
the so-called trade winds, which blow mostly in a NE direction.
The wind roses of 2003 for each WS are shown in Fig. 2a and c
and of 2004 in Fig. 2b and d.

For ease of interpretation, the scatterplot matrix of the 10 vari-
ables of the 2003 data sample has been divided into three figures.
Fig. 3 represents the scatterplot matrix of the different wind
direction variables, while Fig. 4 shows the scatterplot matrix that
corresponds to the different wind speed and wind direction vari-
ables. The 2004 scatterplots have very similar structures. The sam-
ple therefore comprises eight features or input variables (wind
speeds and directions of the four reference stations) for each of
the five target stations, with a sampling size of 6738 data for
2003 and 8114 for 2004 for each of the variables.

Table 2 shows the correlation between the mean hourly wind
speeds of the different WSs in 2003 and 2004. The correlation
was quantified by calculating the Pearson product-moment coeffi-
cient of linear correlation (commonly called Pearson’s correlation
coefficient). Pearson’s correlation coefficient, in this case, measures
the magnitude or strength of the linear association, as well as the
direction (rising or falling, depending respectively on whether
the sign is positive or negative), between the recorded wind speeds
at the target station and reference station [10]. The correlation
coefficients recorded in the two years considered in this study ran-
ged between 0.634 and 0.948. The most notable correlations are
between wind speed variables S1 and S4, corresponding to WS-1
and WS-4.
G



Fig. 1. Location of the weather station used.

Table 1
Weather stations used in the study.

Weather stations Geographical coordinates Year 2003 Year 2004

Latitude north Longitude west Altitude (m) Annual mean (m/s) Standard deviation (m/s) Annual mean (m/s) Standard deviation (m/s)

WS-1 27�5302400 15�2304200 3 6.30 3.30 6.30 3.22
WS-2 27�490400 15�2502700 6 7.37 4.14 7.02 3.86
WS-3 28�2701000 13�5105400 29 5.69 2.56 5.65 2.47
WS-4 27�5504400 15�2302000 24 7.34 3.67 6.99 3.62
WS-5 28�5700800 13�3600000 9 5.83 3.05 5.73 2.83
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Table 3 shows the circular-correlation coefficient (CCC)
between the mean hourly wind directions of the different stations
in 2003 and 2004. The CCC proposed by Fisher and Lee [37,38] to
analyse the relationship between two angular variables was used,
and is defined in Eq. (1).

CCC ¼ 4ðAB� CQÞ
½ðn2 � E2 � F2Þðn2 � G2 � H2Þ�1=2

ð1Þ

where n is the number of data and A, B, C, Q, E, F, G and H are given
by Eq. (2)

A ¼ Pn
i¼1 cosðDiÞ cosðD0

iÞ; B ¼ Pn
i¼1 sinðDiÞ sinðD0

iÞ

C ¼ Pn
i¼1 cosðDiÞ sinðD0

iÞ; Q ¼
Xn
i¼1

sinðDiÞ cosðD0
iÞ

E ¼ Pn
i¼1 cosð2DiÞ F ¼ Pn

i¼1 sinð2DiÞ
G ¼ Pn

i¼1 cosð2D0
iÞ H ¼ Pn

i¼1 sinð2D0
iÞ

9>>>>>>=
>>>>>>;

ð2Þ

Di and D0 represent the n values of the wind direction variables D
and D0, recorded at two sites.

The CCC takes values ranging between �1 and 1, with zero indi-
cating that no relationship exists between the directions and with
1 and �1 representing the strongest association possible. The
hypothesis of non-existence of linear association is rejected if
CCC differs greatly from zero.

The range of CCC determined in the two years varies between
0.2 and 0.794. The linear character of the relationships that this
coefficient detects can be seen in Fig. 3. The most notable relation-
ships are between the wind direction variables D2 and D4, corre-
sponding to WS-2 and WS-4.

Table 4 shows the circular-linear (CL) correlation coefficient
between the mean hourly wind directions (D) and speeds (S) of
the different stations in 2003 and 2004. The CL proposed by Mardia
[39] and Johnson and Wehrley [40] was used and is formulated in
Eq. (3).

CL ¼ r2vc þ r2vs � 2rvcrvsrcs
1� r2cs

� �1=2
ð3Þ

where

rvc ¼ corrðS;cosDÞ; rvs ¼ corrðS;sinDÞ; rcs ¼ corrðcosD;sinDÞ ð4Þ
This coefficient does not reflect the degree of linear relationship
between S and D, but rather the degree of a sinusoidal-type non-
linear and periodic relationship between D and S (the linear corre-
lation that it reflects is the one between S and the joint variable



Fig. 2. Wind roses for each of the stations. The (a) and (c) columns represent the wind roses for 2003, and the (b) and (d) columns for 2004.
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(sinD,cosD)). This coefficient takes values between 0 and 1, which is
to say it does not indicate negative correlation.

The CL correlation coefficients obtained in the two years consid-
ered in this study are in the range 0.252–0.521. The non-linear
periodic structure, typical of the sinusoidal relationships that this
coefficient detects, of the relationships between the wind speed
and wind direction variables can be seen in Fig. 4.

2.2. Techniques used in the comparison

2.2.1. Architecture of the ANNs used
Given the dominance in the scientific literature concerned with

renewable energies of proposals for biologically-inspired algo-
rithms [3,11,18–23,26,27] to estimate long-term wind speed char-
acteristics using multiple reference stations, the models employed
in this paper for such estimation were configured using ANNs.

More specifically, MLP neural networks were used. These pos-
sess a multilayer feedforward structure with a single hidden layer
comprised of hidden units (neurons) with sigmoid activation func-
tions, and a single neuron output layer with linear activation, as
corresponds to the continuous nature of the wind speed at the tar-
get site. Moreover, this architecture has shown its capacity to sat-
isfactorily approximate any continuous transformation [32–34]
and its use has been proposed by several authors [18,20–22]. This
property, known as the universal approximation property, ensures
that an MLP network with a hidden layer can reproduce the struc-
ture of relationships that exist between the input variables and the
target variable, supposing that the relationships are continuous. In
consequence, it is not in theory necessary to use MLP networks
with more than one hidden layer. In practice, moreover, networks
with more than one hidden layer often make model training and
selection processes much more difficult without offering any addi-
tional benefits. This is due to the higher degree of non-linearity
which is introduced into the target function of the optimisation
algorithm and to the addition of an extra parameter for each new
hidden layer (the number of neurons in that layer) in what is
already a complex model selection process. In this context, only
the presence of correlations with a high degree of non-linearity
between the input variables and the target variable, together with
a large sample size that can reveal these complex relationships,
would make such multiple architecture advisable. However, these
are not the circumstances of our particular case in view of the
moderate complexity of the relationships shown in Fig. 3. A more
in-depth discussion of this question which is not limited to the
set of techniques used in the present study can be found in [41].

In this paper, the input neurons of the models are fed with ser-
ies of wind speeds (S) and directions (D) recorded at various refer-
ence stations (Fig. 5). If N reference stations are used, then the



Fig. 3. Scatterplot matrix of the wind directions recorded during 2003 at the five weather stations used in the study.
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maximum number of features (input variables) is 2N and the
number of neurons of the output layer is one (the target site wind
speed).

2.2.2. Selection and training algorithm of the ANN model
The algorithm used in the training of the model of all the MLP

neural networks used in this work is the backpropagation algo-
rithm, which aims to optimise estimation of the parameters of
the networks. More specifically, we used the MultilayerPerceptron
algorithm implemented in Weka (Waikato Environment for
Knowledge Analysis), free software available under the GNU
General Public License [33] and developed by Waikato University
(New Zealand).
The 10-fold cross-validation technique was used to estimate the
error of the estimation models. This technique is widely used and
accepted in the data mining community [33].

The cross-validation mechanism is schematically represented in
Fig. 6. This method consists of dividing the data, once randomly
ordered, into ncv = 10 discrete subsets of similar size. Model learn-
ing then takes place using 9 subsets, with the mean prediction
error being determined with the different metrics in the remaining
subset. The procedure is repeated 10 times, omitting from the
training a different subset each time. The final mean prediction
error with each metric is obtained by calculating the arithmetic
mean of the 10 mean prediction errors obtained in each of the 10
subsets that were successively excluded from the training. The



Fig. 4. Scatterplot matrix of the wind speeds and wind directions recorded during 2003 at the five weather stations used in the study.

Table 2
Linear correlation coefficients between the wind speeds of the five anemometer weather stations.

Year 2003 Year 2004

WS-1 WS-2 WS-3 WS-4 WS-5 WS-1 WS-2 WS-3 WS-4 WS-5

WS-1 1.000 0.878 0.698 0.948 0.756 1.000 0.876 0.669 0.930 0.700
WS-2 0.878 1.000 0.644 0.832 0.725 0.876 1.000 0.634 0.828 0.647
WS-3 0.698 0.644 1.000 0.709 0.697 0.669 0.634 1.000 0.667 0.686
WS-4 0.948 0.832 0.709 1.000 0.741 0.930 0.828 0.667 1.000 0.701
WS-5 0.756 0.725 0.697 0.741 1.000 0.700 0.647 0.686 0.701 1.000
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variance of the 10 mean prediction errors in the 10 cross-validation
groups gives an idea of the variability of these partial means and,
therefore, of model performance stability when handling new data.
The number of neurons in the hidden layer (q in Fig. 5) must be
specified by the designer when configuring the structure of the
network in Weka. Various heuristic rules have been proposed in



Table 3
Circular-correlation coefficients between the wind directions of the five anemometer weather stations.

Year 2003 Year 2004

WS-1 WS-2 WS-3 WS-4 WS-5 WS-1 WS-2 WS-3 WS-4 WS-5

WS-1 1.000 0.575 0.344 0.560 0.200 1.000 0.677 0.405 0.633 0.240
WS-2 0.575 1.000 0.484 0.794 0.335 0.677 1.000 0.461 0.734 0.272
WS-3 0.344 0.484 1.000 0.455 0.469 0.405 0.461 1.000 0.435 0.502
WS-4 0.560 0.794 0.455 1.000 0.304 0.633 0.734 0.435 1.000 0.246
WS-5 0.200 0.335 0.469 0.304 1.000 0.240 0.272 0.502 0.246 1.000

Table 4
Circular-linear correlation coefficients between the wind directions (horizontal) and wind speeds (vertical) of the five anemometer weather stations.

W/D Year 2003 Year 2004

WS-1 WS-2 WS-3 WS-4 WS-5 WS-1 WS-2 WS-3 WS-4 WS-5

WS-1 0.521 0.492 0.520 0.500 0.415 0.411 0.424 0.418 0.399 0.305
WS-2 0.513 0.489 0.576 0.492 0.485 0.435 0.445 0.490 0.437 0.381
WS-3 0.353 0.430 0.422 0.405 0.358 0.270 0.473 0.317 0.291 0.249
WS-4 0.513 0.508 0.505 0.524 0.400 0.412 0.444 0.426 0.433 0.340
WS-5 0.351 0.383 0.412 0.377 0.403 0.252 0.288 0.267 0.265 0.302

Fig. 5. Schematic diagram of an ANN with 2N wind speed (S) and angular wind
direction (D) input signals of N reference stations and one wind speed (S) output
signal of the target station.
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the literature [42] that express the number of neurons in the hid-
den layer as a function of the number of neurons in the input and
output layer. The MultilayerPerceptron procedure of Weka suggests
predefined values for this number of hidden units based on certain
general criteria that have shown good behaviour in different data
sets. However, given the relevance that this parameter has in the
degree of fit and the predictive capacity of the neural networks,
it was decided in this work to estimate this parameter by adapting
it to the particularities of the sample of wind data used in the
study.

Given a set of input variables (features), the number of hidden
layer neurons is estimated through the following procedure: the
process is initiated by using a minimum number of hidden neurons
and this number is increased provided there is a statistically signif-
icant improvement (significance level of 5%) in the errors obtained.
A nonparametric permutation test for paired data is used for the
comparison of the errors of two models [43–46]. Finally, with a
view to obtaining the definitive MLP neural network, this optimum
number of hidden units is used in the training of an MLP neural
network using all the data of the training-validation sample.
2.2.3. Feature selection techniques
The feature selection techniques employed in this work form

part of the so-called supervised methods [30], and more specifi-
cally to those known as filter methods and wrapper methods. In
general, the basic unit to be evaluated in the feature selection pro-
cess is not each variable separately but rather a subset of variables,
since a variable may not be beneficial in isolation but may be so
when accompanied by others. Even redundant variables may be
beneficial if participating in a same subset [47].

Filter methods are pre-process techniques and the criterion
used to establish the appropriate subset of characteristics is based
on measures of quality that are determined, without the interven-
tion of the prediction model, only from an analysis of the data (fea-
tures and target variable) and the relationships that exist between
those data. Different measures of correlation have been proposed
depending on the discrete and/or continuous nature of the vari-
ables, but generally the linear correlation coefficient is used
between continuous variables [35], as is the case in the present
study.

The feature evaluation method used in this work for feature
selection was the CfsSubsetEval [33] and was chosen from among
the different methods incorporated in the Weka tool. This type of
evaluator requires a search method for feature selection and the
one chosen for this study was ExhaustiveSearch [33]. CfsSubsetEval
evaluates the predictive capacity of each individual feature and
the degree of redundancy between them, preferring sets of features
that are highly correlated with the target variable but with low
correlation between themselves. ExhaustiveSearch searches
through the feature subset space, starting with the empty set,
and offers the best subset found.

Wrapper methods [29] select the subsets of variables that pro-
duce the highest predictive capacity using a previously chosen
learning algorithm. This algorithm may be the same as or different
to the algorithm chosen for the problem modelling, though most
authors defend the first option so the algorithm can take maximum
advantage of the chosen variables. In thiswork,we use theMLPneu-
ral networks as integrated algorithm in the wrapper and as MCP
algorithm in the hope that the selection will be more effective if it
adapts to the algorithm that the best subset will finally use. The fea-
ture evaluation method used for feature selection was the Wrap-
perSubsetEval, available in Weka [33] and the search method for
feature selection was the previously mentioned ExhaustiveSearch.

2.2.4. Metrics used to evaluate numerical prediction of the models
The metrics used in this paper to evaluate the numerical predic-

tion of the proposed models were the MAE, the MAPE and the IoA
[36].

MAE is defined by Eq. (5), where the n estimated values are rep-
resented by the letter ‘‘e” and the n observed values by the letter



Fig. 6. Schematic representation of the 10-fold cross-validation mechanism used in the study.
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‘‘o”. MAE is expressed in the same units as the parameters it
compares.

MAE ¼
Pn

i¼1jei � oij
n

ð5Þ

With the MAE, all sizes of error are treated evenly according to
their magnitude. MAPE is defined by Eq. (6).

MAPE ¼ 100
n

Xn
i¼1

ei � oi
oi

����
���� ð6Þ

The MAPE is a relative measurement that expresses the error as
a percentage of the observed data.

Willmott et al. [36] propose the IoA that is given by Eq. (7),
where �o is the arithmetic mean of the values observed. The IoA is
dimensionless and its value is found in the range from �1 to 1.

IoA ¼

1�
Pn

i¼1
jei�oi j

2
Pn

i¼1
joi��oj ; When

Pn
i¼1jei � oij 6 2

Pn
i¼1joi � �oj

2
Pn

i¼1
joi��ojPn

i¼1
jei�oi j

� 1; When
Pn

i¼1jei � oij > 2
Pn

i¼1joi � �oj

8>>>>>>><
>>>>>>>:

ð7Þ
According to Willmott et al. [36], in general, the IoA is more
rationally related to model accuracy than other indices in use. They
also point out that this index is quite flexible and so is applicable to
a wide range of model-performance problems. When IoA values
are close to 1 this indicates strong agreement between the results
of the model and the observations. If IoA is equal to 0, this means
according to Willmott et al. [36] that ‘‘the sum of the magnitudes
of the errors and the sum of the perfect-model-deviation and
observed-deviation magnitudes are equivalent”. However, the
same authors also point out that ‘‘values of IoA near �1 can mean
that the model-estimated deviations about o are poor estimates of
the observed deviations; but, they also can mean that there simply
is little observed variability. As the lower limit of IoA is
approached, interpretations should be made cautiously”.

2.3. Hardware used for the calculations

Given the methodological procedure used (described in
Section 3) to attain the objectives outlined and given the volume
of data involved in the study, it is clear that the computational time
required would be considerable if using a PC with a low number of
microprocessors. It was therefore decided to use a supercomputer,
in this case Atlante which forms part of the Spanish
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Supercomputing Network and has a distributed-memory cluster
[48]. Atlante consists of 84 IBM JS21 compute nodes (blades). Each
blade has two dual-core processors at 2.5 GHz running the Linux
operating system with 8 GB of memory RAM and 73 GB local disk
storage. In total, peak performance of Atlante is 3.09 TFlops. One
of the networks that interconnects Atlante (Myrinet Network)
has a high bandwidth which it uses for parallel communication
applications.
3. Methodology

3.1. Preamble

A general outline of the procedure used is shown in Fig. 7. For
easier interpretation the procedure has been particularised for
the case in which the short-term series of wind speeds and direc-
tions at the reference stations are the four shown in Table 1 and
Fig. 1 (with codes WS-2 to WS-5) and the target site is WS-1.
The year 2003 is taken as the time period representative of the
short-term common to all stations. As indicated by various authors
[1,2,4,5,9,10], a long series of wind data at a target site is required
to estimate the corresponding long-term wind resource (some
authors speak of the need for 20 or 30 years worth of data
[1,5,7–10]). Given that no such long historical series of data (which
would meet the typical constraints of MCP methods [10]) were
available for a significant number of stations which would allow
the analysis of different degrees of correlation, the stages indicated
in Fig. 7 by a circled ‘3’ and circled ‘4’ will not be taken into consid-
eration in the procedure employed in this paper. In other words,
the model construction and testing stages are covered, as the
length of the short-term representative series extends to one year
and, therefore, the seasonal variation influence of the wind charac-
teristics is considered to be picked up, as is generally recom-
mended [10]. However, long-term hindsighting of the wind
conditions of the target station is not carried out.

Though Fig. 7 represents a specific case, the work actually per-
formed was much more extensive in that the cases analysed
included each of the five WSs of Table 1 as target site and both
2003 and 2004 were used as the short-term representative year.
3.2. Procedure followed

As can be seen in Fig. 7, the procedure consists of three indepen-
dent action blocks to produce the different MCP models that result
from using MLP neural networks.

One block uses the complete set of variables, which is to say
that no type of feature selection takes place. This is indicated by
the letters ‘FS’ (Full Set) enclosed in a polygon in Fig. 7. This block
produces MLP neural networks trained with all the variables
according to the procedure and model selection described in Sec-
tions 2.2.1 and 2.2.2. The other two blocks employ the feature
selection methods explained in Section 2.2.3. The FA block is
represented in Fig. 7 by the itinerary represented by the initials
‘‘FA-1” and ‘‘FA-2” enclosed in polygons. MLP neural networks
are generated in this process according to the model training and
selection algorithm described in Section 2.2.2, using as input the
subset of variables with highest merit after an exhaustive search
through the space of feature subsets. The WA block is represented
in Fig. 7 by the itinerary represented by the initials ‘‘WA-1” and
‘‘WA-2” enclosed in polygons. This block produces MLP neural net-
works trained with the model selection and training algorithm
described in Section 2.2.2, using as input the subset of variables
which produces the best predictive results in a 10-fold cross-
validation process using MLP neural networks (also trained as
described in Section 2.2.2).
The itinerary of each of the three blocks (FS, FA, WA) leads to
the selection of the best model for each strategy. Once the best
models for the FS, FA andWA strategies have been selected, a com-
parison between them is made based on the magnitudes of the
mean errors obtained in the cross-validations. This comparison
focuses on two aspects. One is based on a comparison of the mag-
nitudes of the metrics obtained in the cross-validations (indicated
in Fig. 7 by a circled ‘1’) and the other on the classic statistical anal-
ysis of null hypothesis (see Section 3.2.1). The aim is to know
whether, from a statistical point of view, there exists a significant
difference between the results obtained with the three strategies
(this action is indicated by a circled ‘2’ in Fig. 7).
3.2.1. Testing for statistical significance
The purpose of the statistical analysis presented in this subsec-

tion is to determine whether the mean error of the ten mean errors
obtained with the 10-fold cross-validation of a model is signifi-
cantly larger or smaller than the mean error of another model.
Note that, as three metrics have been proposed (IoA, MAE and
MAPE) to evaluate wind speed prediction (Section 2.2.4), there
are three samples for each metric (one sample for each model:
FA, WA and FS) and each sample has ten data values.

Note also that, in order to rationalise the computational load of
the procedure, the same random cross-validation partitions were
used in the process to obtain each of the models (FA, WA and
FS). The reason behind this was also to try to minimize the variance
of the difference between the mean metrics obtained by the three
models, as these share the same experimental unit (the same par-
tition of data of each cross-validation iteration: the same nine
groups used for the training and the same group excluded for val-
idation in which the metric is evaluated). So, for each metric we
have a scenario of analysis of variance with three levels of treat-
ment and three potentially dependent samples (ANOVA within
subjects), in which the two-by-two comparisons will be made. As
multiple comparisons will be made, the adjusted p-values will be
calculated using the procedure proposed by Benjamini and
Hochberg [49], normally called the BH step-up procedure.

The decision problem consists of choosing between the null
hypothesis H0 and the alternative hypothesis H1, Eq. (8), with a sig-
nificance level of 5%. In the case of the IoA metric, if the null
hypothesis is rejected then model i is considered better than model
j. In the case of the MAE and MAPE metrics, if the null hypothesis is
rejected then model j is considered better than model i. In the case
that it is not possible to reject the null hypothesis then it cannot be
said that either of the two models that are being compared is bet-
ter than the other.

H0 : li ¼ lj; H1 : li > lj ð8Þ

In Eq. (8), li and lj represent the population means of the models i
and j, respectively.

To resolve the problem, Eq. (8), both the paired and unpaired
parametric Student’s t-test [50,51] will be used in this paper and
a judgement value will made in view of the correlations that exist
between the samples. When the hypothesis of normality is rejected
(the modified statistic of Anderson–Darling [52] was applied for
this purpose), given that the number of data is small (ncv = 10),
non-parametric permutation tests were used for both dependent
(paired) samples and independent (unpaired) samples. The choice
between them will depend on the correlations that exist between
the samples.

The non-parametric permutation tests used in this study were
first proposed by Fisher [43] and Pitman [44] and have continued
to evolve to the present day on the basis of subsequent work car-
ried out by the same authors [45,46].



Fig. 7. General configuration of the methodological procedure followed.
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The null hypothesis H0 will be discarded if p-value (adjusted) 6
a in favour of the alternative hypothesis H1.
4. Analysis of results

The most important results obtained by the best models gener-
ated following the procedure described in Section 3.2 for the filter,
wrapper and full feature set methods are shown in Figs. 8–10. Each
of these three figures corresponds to one of the metrics used in the
comparison (Section 2.2.4) and is comprised of two graphical
representations which each show the mean loss obtained when
predicting the mean wind speeds using one of the years as a
short-term representative training-validation sample (a on the left
for 2003; b on the right for 2004).

Each of these two graphical representations shows, from top to
bottom, the optimum number of neurons for the model selected in
each strategy, the variables finally selected in each model, and a
bar diagram indicating the mean loss in the 10 cross-validation
groups used and an interval centred on this mean of the standard
deviation of the loss in the cross-validation process.

The computational load required for selection of the MCP mod-
els (including feature selection) was counted by measuring the
CPU times (using 32 of the 84 blades of the hardware indicated
in Section 2.3) needed to run the models. By way of example, the
CPU time required for selection of the MCP model of the target sta-
tion WS-1 (year 2003) using the IoA metric and FA method was
1019s, while the time required for the same WS and metric in
the case of the WA method was 66803s. Expressed another way,
the CPU time required for the WA-based model was 6456% higher
than for the FA model.

Tables 5–7, each of which corresponds to one of the three met-
rics (IoA, MAE and MAPE) used in the comparison, show the results
of the application of the different statistical hypothesis tests
explained in Section 3.2.1 to the losses obtained by the different
models (FA, WA and FS) in the cross-validation process used in
their training-validation.

The content of each of the three tables is the same, but particu-
larised for each metric. The first column indicates the target station
in each MCP problem, the second shows the alternative hypothesis
(H1), the third the data year (short-term representative) used for
training-validation of the models whose 10 cross-validation results
are being compared, and the fourth the linear correlation coeffi-
cient (q) obtained between the samples being compared. The fifth,
sixth and seventh columns show the p-values of the following sta-
tistical tests: the Anderson–Darling Test for normality of the differ-
ence between two samples of mean losses produced by the two
models being compared, and the Student Test and Permutation
Test (both for paired samples). The last column shows the adjusted
p-value, following the BH procedure [49] of the paired Permutation



Fig. 8. Results obtained for the IoA metric: (a) Estimation of mean hourly wind speeds (training year: 2003), (b) estimation of mean hourly wind speeds (training year: 2004).
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Test. Note that the p-values obtained from a total of 90 comparison
tests (5 WS � 3 models (FA, WA and FS) � 2 years (2003 and
2004) � 3 metrics (IoA, MAE and MAPE)) were used to calculate
the p-values shown in the final column of Tables 5–7 with the
BH method. Note too that the adjusted p-values of Tables 5–7 are
written in bold when the null hypothesis is rejected and the alter-
native hypothesis shown in the second column of these tables is
accepted. The adjusted p-values which correspond to target station
WS-4, year 2003 and alternative hypotheses WA > FA and WA > FS
are written in parenthesis in Table 5 in order to show negative and
low correlation coefficients between samples. The same thing
occurs in Table 6 for the same station and year, in the case of the
alternative hypotheses FA > WA and FS >WA. In these cases, the
unpaired tests described in Section 3.2.1 (Table 8) were also used
in view of these correlations to make a judgement value. The
adjusted p-values shown in the final column of Table 8 and those
shown in parenthesis in Tables 5 and 6 lead to the conclusion that,
in the cases analysed, both the paired and unpaired tests indicate
that there is no evidence to reject the null hypothesis that there
are no significant differences with a significance level of 5%.

An analysis of the results is performed below with a distinction
between the results that could be considered of a methodological
type, as they are associated with the comparison made between
the filter, wrapper and full variable set strategies using MLP neural
networks, and those which could be considered specific results of
the different MCP problems considered for this comparison in the
wind scenario of the Canary Archipelago.

4.1. Methodological type results

The results shown in Figs. 8–10 are synthesised in Fig. 11,
where it can be seen that, independently of the metric used (IoA,
MAE or MAPE), the WA gave lower mean errors than the FA in
100% of the cases analysed (10 cases: 5 stations � 2 years). It can
also be seen that in at least 80% of the cases analysed the WA gave
lower mean errors than the FS and that the FS never gave lower
errors than the WA. In addition, in at least 80% of the cases anal-
ysed the FS gave lower mean errors than the FA. However, the FS
generated higher mean errors than the FA in 20% of the cases when
the IoA and MAE metrics were used.

Despite the results shown in Fig. 11, it should be noted that, at
first sight and considering the magnitudes of the metrics generated
by the three models (WA, FA and FS) (Figs. 8–10), no notable differ-
ence can be observed between them and, therefore, none of the
models can be totally discarded a priori without considering other
possible benefits. In particular, the FA appears to be competitive at
predictive level in the cases in which the errors were lower (WS-1
and WS-4), despite using a smaller number of variables than the
other two models. This means that fewer computational resources
are required and, no less important, allows for much greater
interpretability.

As can be observed in Figs. 8–10, the WA produces models with
a higher number of variables than the FA which contribute some
information in the prediction and which are useful to the MLP net-
works. This happens despite the redundancy between variables
observed in Section 2.1. So, the MLP networks can manage this
redundancy without missing out on the specific information that
each variable may provide about the target variable. However,
the FA generated simpler models than the WA, as it used between
40% and 75% fewer variables than theWA, and with a smaller num-
ber of neurons in the hidden layers. The higher number of neurons
of the hidden layer of the MLP produced by the WA has an impact
on the number of iterations and the computational load of the
training algorithms. So, the MLP training algorithms, in the case
of using FA, are faster and potentially more effective at estimating
the parameters.



Fig. 9. Results obtained for the MAE metric: (a) Estimation of mean hourly wind speeds (training year: 2003), (b) estimation of mean hourly wind speeds (training year:
2004).
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It is also clear from Figs. 8–10 that the differences in the sets of
variables selected by both methods (WA and FA) are fundamen-
tally to be found in the direction variables. This is coherent with
the larger non-linear component of the relationships between the
direction variables and the speed variables which act as target
(Fig. 4), resulting in low Pearson’s correlation coefficients which
are insufficient for the CFS filter method, which uses these coeffi-
cients, to select the direction variables in the subset. In all cases,
the absolute value of Pearson’s correlation coefficient was below
0.5 and in some cases below 0.04 (Table 9). The authors of the pre-
sent paper consider that it would be convenient for the filter
method to use with these pairs of variables the circular-linear cor-
relation coefficient, Eq. (3), which detects these non-linear rela-
tionships, with the aim of working under the same conditions as
the WA. With this in mind, the authors propose to undertake this
methodological improvement in a future study with a view to con-
firming or qualifying the parsimony differences and the predictive
differences between the two strategies that were obtained in the
present study.

The results of Tables 5–7 are summarised in Fig. 12 and show
that, independently of the metric used, the WA performed signifi-
cantly better than the FA in 60% of cases and in no case did it per-
form worse. It can also be seen in Fig. 12 that the WA did not give
significantly different results from the FS for the IoA and MAPE
metrics in 90% of the cases analysed (in the remaining 10% of cases
the WA was significantly better). There were no significant differ-
ences between the WA and the FS in 100% of cases with the MAE
metric. Meanwhile, the FS was significantly better than the FA in
40% of cases with the IoA and MAE metrics, and never worse. With
the MAPEmetric, the FS was better than the FA in 20% of cases with
no significant differences observed between them in the remaining
80%.
4.2. Results of the different MCP problems posed in the Canary
Archipelago

For the analysis of the particular results of the different stations
considered as target, a distinction will be made between two
groups of stations: one group comprised of WS-1 and WS-4 and
a second of WS-2, WS-3 and WS-5.

� Stations WS-1 and WS-4: it can be seen in Figs. 8–10 that the
smallest errors in mean hourly wind speed prediction were
made for these target stations, independently of the models
(WA, FA and FS) used and of the year (2003 or 2004) used to
represent the short-term. It can even be observed in the case
of these two stations that in most cases analysed (metrics and
year) there was no significant statistical difference between
the three models (FA, WA and FS) at a 5% level (Tables 5–8).
Specifically, in the case of the MAE metric (Tables 6 and 8) in
no case is there evidence to reject the null hypothesis at that
significance level. The same can be said for the MAPE metric
(Table 7) in the case of 2004 (in the case of 2003, the p-values
are not much lower than 0.05 and there would be no evidence
to reject the null hypothesis in the case of a significance level
below 4%). It can be deduced from the analyses that an absence
of evidence to reject the null hypothesis is fundamentally a con-
sequence of the high degree of linear correlation between the
wind speeds recorded at these target stations and the data
available at the stations which served as reference (Table 2).
The direction variables are less relevant. It can be seen that
the direction variables did not intervene in the FA models used
in wind speed estimation of the target stations WS-1 and WS-4.
The degree of linear correlation influences especially the magni-
tude of the IoA metric. The highest correlation coefficients



Fig. 10. Results obtained for the MAPE metric: (a) Estimation of mean hourly wind speeds (training year: 2003), (b) estimation of mean hourly wind speeds (training year:
2004).

Table 5
Analysis of statistically significant differences for the IoA metric. Tests for paired samples.

Target site Alternative hypothesis Training year q p-value p-value (adjusted)

Anderson Darling Student test Permutation test Permutation Test

WS-1 FA > FS 2003 0.598 0.1044 0.3833 0.3809 0.4223
WA > FA 0.535 0.2588 0.265 0.2676 0.3211
WA > FS 0.814 0.5340 0.0616 0.0693 0.1199
FS > FA 2004 0.976 0.0040 – 0.0313 0.0704
WA > FA 0.861 0.0001 – 0.0010 0.0129
WA > FS 0.918 0.0035 – 0.0068 0.0306

WS-2 FS > FA 2003 0.692 0.8929 0.0014 0.0029 0.0218
WA > FA 0.849 0.5386 0.0001 0.0010 0.0129
WA > FS 0.936 0.0415 – 0.3848 0.4223
FS > FA 2004 0.362 0.2732 0.0049 0.0039 0.0219
WA > FA 0.362 0.2732 0.0049 0.0039 0.0219
WA > FS 1.000 – – 1.0000 1.0000

WS-3 FS > FA 2003 0.982 0.1462 0.015 0.0107 0.0401
WA > FA 0.942 0.4396 0.003 0.0029 0.0218
WA > FS 0.946 0.5491 0.0249 0.0273 0.0683
FS > FA 2004 0.759 0.0013 – 0.0010 0.0129
WA > FA 0.759 0.0013 – 0.0010 0.0129
WA > FS 1.000 – – 1.0000 1.0000

WS-4 FS > FA 2003 0.621 0.3640 0.1246 0.1260 0.1772
WA > FA (�0.259) 0.0028 – (0.0198) (0.0540)
WA > FS (�0.200) 0.0214 – (0.1172) (0.1716)
FA > FS 2004 0.951 0.0092 – 0.3096 0.3572
WA > FA 0.930 0.0182 – 0.1338 0.1853
WA > FS 0.876 0.1256 0.1586 0.1660 0.2134

WS-5 FS > FA 2003 0.939 0.0188 – 0.0488 0.0994
WA > FA 0.942 0.4312 0.0194 0.0156 0.0453
WA > FS 0.971 0.6267 0.0785 0.0742 0.1237
FS > FA 2004 0.945 0.1945 0.0674 0.0684 0.1199
WA > FA 0.915 0.0042 – 0.0049 0.0245
WA > FS 0.915 0.0017 – 0.1494 0.2004
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Table 6
Analysis of statistically significant differences for the MAE metric. Tests for paired samples.

Target site Alternative hypothesis Training year q p-value p-value (Adjusted)

Anderson Darling Student Test Permutation Test Permutation Test

WS-1 FS > FA 2003 0.588 0.1056 0.3808 0.3799 0.4223
FA > WA 0.529 0.2595 0.2638 0.2656 0.3211
FS > WA 0.807 0.5023 0.0614 0.0693 0.1199
FA > FS 2004 0.978 0.0032 – 0.0313 0.0704
FA > WA 0.820 0.0000 – 0.0381 0.0836
FS > WA 0.855 0.0084 – 0.1914 0.2393

WS-2 FA > FS 2003 0.643 0.8646 0.0014 0.0029 0.0218
FA > WA 0.825 0.5538 0.0001 0.001 0.0129
FS > WA 0.928 0.0372 – 0.3926 0.4257
FA > FS 2004 0.310 0.2997 0.005 0.0039 0.0219
FA > WA 0.310 0.2997 0.005 0.0039 0.0219
FS>WA 1.000 – – 1.0000 1.0000

WS-3 FA>FS 2003 0.982 0.1670 0.0148 0.0107 0.0401
FA>WA 0.939 0.3731 0.0032 0.0029 0.0218
FS>WA 0.945 0.6174 0.0242 0.0273 0.0683
FA>FS 2004 0.593 0.0024 – 0.0010 0.0129
FA>WA 0.593 0.0024 – 0.0010 0.0129
FS>WA 1.000 – – 1.0000 1.0000

WS-4 FA>FS 2003 0.730 0.3036 0.1178 0.1250 0.1772
FA>WA (�0.026) 0.0020 – (0.0196) (0.0540)
FS>WA (�0.141) 0.0227 – (0.1172) (0.1716)
FS>FA 2004 0.959 0.0080 – 0.3027 0.3538
FA>WA 0.936 0.0170 – 0.1387 0.1891
FS>WA 0.901 0.1153 0.1576 0.1641 0.2134

WS-5 FS>FA 2003 0.936 0.0201 – 0.041 0.0879
FA>WA 0.937 0.4396 0.0164 0.0156 0.0453
FS>WA 0.966 0.5866 0.0744 0.0742 0.1237
FA>FS 2004 0.934 0.1906 0.0691 0.0693 0.1199
FA>WA 0.886 0.0055 – 0.0049 0.0245
FS>WA 0.892 0.0017 – 0.1514 0.2004

Table 7
Analysis of statistically significant differences for the MAPE metric. Tests for paired samples.

Target site Alternative hypothesis Training year q p-value p-value (Adjusted)

Anderson Darling Student Test Permutation Test Permutation Test

WS-1 FA>FS 2003 0.828 0.0354 – 0.0498 0.0994
FA>WA 0.844 0.5628 0.0135 0.0107 0.0401
FS>WA 0.984 0.8257 0.0158 0.0137 0.0453
FA>FS 2004 0.908 0.0188 – 0.0596 0.1118
FA>WA 0.908 0.0188 – 0.0596 0.1118
FS>WA 1.000 – – 1.0000 1.0000

WS-2 FA>FS 2003 0.871 0.584 0.1962 0.2061 0.2541
FA>WA 0.876 0.2688 0.0085 0.0059 0.0279
FS>WA 0.765 0.8988 0.083 0.0859 0.1397
FS>FA 2004 0.987 0.0003 – 0.3721 0.4223
FA>WA 0.981 0.0787 0.0100 0.002 0.0218
FS>WA 0.980 0.0185 – 0.1123 0.1713

WS-3 FA>FS 2003 0.964 0.8460 0.0282 0.0313 0.0704
FA>WA 0.880 0.1565 0.0206 0.0225 0.0596
FS>WA 0.906 0.5339 0.1080 0.1182 0.1716
FA>FS 2004 0.938 0.4974 0.0177 0.0127 0.0440
FA>WA 0.445 0.0082 – 0.0078 0.0334
FS>WA 0.645 0.0003 – 0.0303 0.0704

WS-4 FA>FS 2003 0.5733 0.0017 – 0.0146 0.0453
FA>WA 0.5733 0.0017 – 0.0146 0.0453
FS>WA 1.000 – – 1.0000 1.0000
FA>FS 2004 0.954 0.3466 0.0865 0.0928 0.1465
FA>WA 0.941 0.0120 – 0.0967 0.1501
FS>WA 0.965 0.1940 0.4790 0.4795 0.5138

WS-5 FA>FS 2003 0.912 0.1175 0.0479 0.0508 0.0994
FA>WA 0.959 0.6020 0.0133 0.0117 0.0421
FS>WA 0.973 0.3399 0.2874 0.2881 0.3412
FA>FS 2004 0.976 0.9226 0.0875 0.0869 0.1397
FA>WA 0.944 0.0100 – 0.0488 0.0994
FS>WA 0.974 0.0010 – 0.1738 0.2203
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Table 8
Analysis of statistically significant differences. Test for unpaired samples.

Metric Alternative hypothesis Training year p-value p-value (Adjusted)

Anderson Darling Anderson Darling Student test Permutation test Permutation test

IoA WA>FA 2003 0.0925 0.0001 – 0.0187 0.0526
WA>FS 0.0925 0.0680 0.0902 0.0888 0.1402

MAE FA>WA 2003 0.0002 0.9497 – 0.0196 0.0535
FS>WA 0.0914 0.9497 0.0943 0.0944 0.1440

Fig. 11. Comparison between the magnitudes of the metrics of the three models (WA, FA and FS) obtained in the 10-fold cross-validation process, for the ten cases analysed
(5 weather stations � 2 years).

Table 9
Pearson’s correlation coefficients between the wind speeds (vertical) and wind directions (horizontal) of the five anemometer weather stations.

W/D Year 2003 Year 2004

WS-1 WS-2 WS-3 WS-4 WS-5 WS-1 WS-2 WS-3 WS-4 WS-5

WS-1 �0.470 �0.431 �0.410 �0.404 �0.0369 �0.425 �0.404 �0.363 �0.357 0.038
WS-2 �0.431 �0.424 �0.467 �0.342 �0.452 �0.404 �0.423 �0.408 �0.317 �0.061
WS-3 �0.410 �0.467 �0.366 �0.283 �0.281 �0.363 �0.357 �0.297 �0.208 �0.061
WS-4 �0.404 �0.342 �0.283 �0.444 �0.334 �0.357 �0.317 �0.208 �0.384 0.073
WS-5 �0.369 �0.452 �0.281 �0.334 �0.296 0.038 �0.061 �0.061 0.073 0.141

Fig. 12. Comparison between the percentage of cases of the 10 considered (5
weather stations � 2 years) in which the alternative hypotheses are accepted over
the null hypotheses for each of the three metrics (IoA, MAE and MAPE) analysed.
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observed between the wind speeds of the target stations WS-1
and WS-4 were 0.948 (year 2003) and 0.93 (year 2004).
According to the rules of thumb recommended for MCP meth-
ods in the literature [10], these correlation coefficients can be
classified ‘very good’.
� Stations WS-2, WS-3 and WS-5: The highest linear correlation
coefficients detected between the target stations WS-2, WS-5
and WS-3 and the stations which were used as reference were
0.878, 0.756 and 0.709, respectively, in year 2003, and 0.876,
0.701 and 0.686, respectively, in 2004. According to the afore-
mentioned rules of thumb, these correlation coefficients would
be classified as ‘poor’, ‘moderate’ or ‘good’ depending on the
range (0.6–0.7, 0.7–0.8 and 0.8–0.9, respectively) they are found
in.

It can be seen in Figs. 8–10, in the case of the target stations
WS-2, WS-3 and WS-5, where the coefficients of linear correlation
with the reference stations would be catalogued according to the
aforementioned rules of thumb as good (station WS-2) and moder-
ate or poor (stations WS-5 and WS-3), that the direction variables
and the redundancy between variables in the MLPs produced by
the wrapper method enhance, in comparison with the filter meth-
ods, the predictive capacity of the wind speeds. The filter methods
used (CFS) renounced redundancy between variables and dis-
carded the use of the direction variables, with the exception of tar-
get station WS-2, where the FA models used the direction variables
D3 and D5 (year 2003) and D3 and D1 (year 2004). It can be seen in
Tables 5–8 that, in the case of these three target stations and for all
cases analysed (metrics and years), there are statistically
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significant differences (5% significance level) between the errors
generated by the filter models and the wrapper models, with the
WA errors being lower. Similar conclusions can be drawn when
comparing the FS and FA models, except in the case of target sta-
tion WS-5, where the differences between the errors generated
by these models were not statistically significant at a 5% level. It
can also be seen in Tables 5–8 that, for these three target stations
in no case was there evidence to reject the null hypothesis chosen
to compare the WA and the FS.

Although the study undertaken focussed on the short-term per-
iod, it should be remembered that the purpose of MCP models is to
estimate long-term wind speed series at a target site. In this con-
text, and as mentioned in Section 3.1, MCP methods require a ser-
ies of conditions to be met for them to be useful [10]. These
conditions are as follows: (a) The wind data series must have been
recorded by the WSs in compliance with certain standards. In par-
ticular, there must have been no changes to the area surrounding
any of the WSs (new buildings, installation of wind farms, major
changes to the vegetations, etc.) that could have modified the rela-
tionships between the wind data of theWSs. (b) The data sets must
be statistically stationary (wind behaviour in the future during the
working life of the energy project must be analogous to past beha-
viour). (c) The short-term data series recorded at the target WS
must allow conclusions to be drawn about seasonal variations
(wind speed and direction), and (d) The wind climate of the differ-
ent WSs must be similar.

In the framework of the present study, it should be noted that
the non-availability of long wind data series meant it was not pos-
sible to analyse some of the previously described determinants of
MCP methods. Nonetheless, the conclusions drawn from the com-
parative analysis of WA, FA and FS methods in the short-term peri-
ods for each of the two years considered are very similar in terms
of predictive ranking, the selection of variables made and even the
number of hidden units obtained in the models of the two years.
Moreover, this was despite the instability that MLP algorithms usu-
ally present due to the multiple local optima in which non-linear
optimisation algorithms can terminate. This suggests that the con-
clusions obtained in this study are applicable to MCP methods if it
can be assumed that the wind climate of the WSs fits a sufficiently
stable pattern (as is the case of the two years studied).
5. Conclusions

A specific analysis was undertaken in this paper of the useful-
ness of feature selection methods using ANNs in MCP methods.
To date, no similar analysis has been published in the literature
and no feature selection methods have been implemented in
MCP modules of the software programmes employed in the wind
industry. This study compared two general strategies for feature
selection in real conditions, the CFS filter method and the wrapper
method, and the two were also compared to a model (FS) which
made no feature selection. MLP neural networks trained with
quadratic loss through the backpropagation algorithm were used
as an inductive algorithm.

The comparison was made in the context of an MCP strategy for
the prediction of the wind resource at five stations chosen succes-
sively as the target site, using the four remaining stations as refer-
ence sites. This entailed posing five MCP problems in which the
dependent variable was the wind speed at the target site and the
independent variables were the wind speeds and directions at
the four reference stations. Below, we present the main conclu-
sions obtained from the study:

When a statistical comparison of the wind speeds of the target
WS and reference WSs gives Pearson’s correlation coefficients
which are ranked in the literature as very good (between 0.9 and
1), the FA method can be considered competitive in terms of pre-
dictive ability and is more interpretable by the analyst than the
WA method. The FA method uses a lower number of features than
the WA method and also requires less computational resources.
However, the best results of the WA show that when MLP neural
networks are being used as a predictive model the redundancy
between variables can be beneficial for the prediction as well as
lending robustness to the model. As the degree of non-linearity
in the relationships between features increases (for example, when
the WSs are located in complex terrain where the direction vari-
able may acquire more significance), use of the WAmethod for fea-
ture selection becomes more recommendable, although the FA can
still be used as an interpretive tool. However, it must be remem-
bered that using WA methods has a high computational cost.
Moreover, these methods require enough data for complex non-
linear relationships to show up.

In the case analysed, the differences between the sets of fea-
tures selected by the WA and FA methods were fundamentally
found in the wind direction variables. As the CFS filter method uses
Pearson’s linear correlation coefficients for feature selection, when
these are low (the case of wind direction variables) the CFS method
tends to discard them in the subset. For this reason, incorporation
in the filter methods is recommended of correlation coefficients of
a non-linear nature which are able to detect the non-linear rela-
tionships that may exist between the wind direction features and
between these and the linear features. In this way, the lower com-
putational load of these methods can be taken advantage of with-
out losing predictive capacity.
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