Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46951
Campo DC Valoridioma
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorPal, Umapadaen_US
dc.contributor.authorBallester, Miguel Angel Ferreren_US
dc.contributor.authorBlumenstein, Michaelen_US
dc.date.accessioned2018-11-23T09:40:02Z-
dc.date.available2018-11-23T09:40:02Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-3516-1en_US
dc.identifier.issn2164-7143en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/46951-
dc.description.abstractIn this paper we propose a biometric sclera recognition and validation system. Here the sclera segmentation is performed bya time-adaptive active contour-based region growing technique. The sclera vessels are not prominent so image enhancement is required and hence a bank of 2D decomposition. A Haar wavelet multi-resolution filter is used to enhance the vessels pattern for better accuracy. For feature extraction, Dense Scale Invariant Feature Transform (D-SIFT) is used. D-SIFT patch descriptors of each training image are used to form bag of features by using k-means clustering and a spatial pyramid model, which is used to produce the training model. Support Vector Machines (SVMs) are used for classification. The UBIRIS version 1 dataset is used here for experimentation. Anencouraging Equal Error Rate (EER) of 0.66% is attained in the experiments presented.en_US
dc.languageengen_US
dc.relation.ispartofInternational Conference on Intelligent Systems Design and Applicationsen_US
dc.sourceInternational Conference on Intelligent Systems Design and Applications, ISDA [ISSN 2164-7143] (6920711), p. 74-79, (2013)en_US
dc.subjectInvestigaciónen_US
dc.subject.otherBiometricen_US
dc.subject.otherSclera Vessel Patternsen_US
dc.subject.otherD-Siften_US
dc.subject.otherSvmen_US
dc.subject.otherBag Of Featuresen_US
dc.subject.otherK-Meansen_US
dc.subject.otherBank Of 2D Decomposition Haar Multi-Resolution Filters Waveleten_US
dc.titleSclera recognition using dense-SIFTen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2013 13th International Conference on Intellient Systems Design and Applications, ISDA 2013en_US
dc.identifier.doi10.1109/ISDA.2013.6920711en_US
dc.identifier.scopus84908164932-
dc.identifier.isi000364966500013-
dc.contributor.authorscopusid7403596707-
dc.contributor.authorscopusid57214490551-
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid56126176900-
dc.contributor.authorscopusid56243577200-
dc.description.lastpage79en_US
dc.identifier.issue6920711-
dc.description.firstpage74en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid3164655-
dc.contributor.daisngid25227-
dc.contributor.daisngid4492603-
dc.contributor.daisngid110880-
dc.description.numberofpages6en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Das, A-
dc.contributor.wosstandardWOS:Pal, U-
dc.contributor.wosstandardWOS:Ballester, MAF-
dc.contributor.wosstandardWOS:Blumenstein, M-
dc.date.coverdateOctubre 2014en_US
dc.identifier.conferenceidevents121529-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.event.eventsstartdate08-12-2013-
crisitem.event.eventsenddate10-12-2013-
Colección:Actas de congresos
miniatura
Adobe PDF (904,65 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.