Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46951
Título: | Sclera recognition using dense-SIFT | Autores/as: | Das, Abhijit Pal, Umapada Ballester, Miguel Angel Ferrer Blumenstein, Michael |
Clasificación UNESCO: | Investigación | Palabras clave: | Biometric Sclera Vessel Patterns D-Sift Svm Bag Of Features, et al. |
Fecha de publicación: | 2014 | Publicación seriada: | International Conference on Intelligent Systems Design and Applications | Conferencia: | 2013 13th International Conference on Intellient Systems Design and Applications, ISDA 2013 | Resumen: | In this paper we propose a biometric sclera recognition and validation system. Here the sclera segmentation is performed bya time-adaptive active contour-based region growing technique. The sclera vessels are not prominent so image enhancement is required and hence a bank of 2D decomposition. A Haar wavelet multi-resolution filter is used to enhance the vessels pattern for better accuracy. For feature extraction, Dense Scale Invariant Feature Transform (D-SIFT) is used. D-SIFT patch descriptors of each training image are used to form bag of features by using k-means clustering and a spatial pyramid model, which is used to produce the training model. Support Vector Machines (SVMs) are used for classification. The UBIRIS version 1 dataset is used here for experimentation. Anencouraging Equal Error Rate (EER) of 0.66% is attained in the experiments presented. | URI: | http://hdl.handle.net/10553/46951 | ISBN: | 978-1-4799-3516-1 | ISSN: | 2164-7143 | DOI: | 10.1109/ISDA.2013.6920711 | Fuente: | International Conference on Intelligent Systems Design and Applications, ISDA [ISSN 2164-7143] (6920711), p. 74-79, (2013) |
Colección: | Actas de congresos |
Citas SCOPUSTM
42
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
26
actualizado el 25-feb-2024
Visitas
70
actualizado el 11-may-2024
Descargas
227
actualizado el 11-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.