Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46808
DC FieldValueLanguage
dc.contributor.authorLazcano, R.en_US
dc.contributor.authorMadronal, D.en_US
dc.contributor.authorFabelo, H.en_US
dc.contributor.authorOrtega, S.en_US
dc.contributor.authorSalvador, R.en_US
dc.contributor.authorCallico, G. M.en_US
dc.contributor.authorJuarez, E.en_US
dc.contributor.authorSanz, C.en_US
dc.date.accessioned2018-11-23T08:25:31Z-
dc.date.available2018-11-23T08:25:31Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538635346en_US
dc.identifier.issn2164-9766en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/46808-
dc.description.abstractThis paper presents a study of the par alle lization possibilities of a Non-Linear Iterative Partial Least Squares algorithm and its adaptation to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. The aim of this work is twofold: first, to test the behavior of iterative, complex algorithms in a manycore architecture; and, secondly, to achieve real-time processing of hyperspectral images, which is fixed by the image capture rate of the hyperspectral sensor. Real-time is a challenging objective, as hyperspectral images are composed of extensive volumes of spectral information. This issue is usually addressed by reducing the image size prior to the processing phase itself. Consequently, this paper proposes an analysis of the intrinsic parallelism of the algorithm and its subsequent implementation on a manycore architecture. As a result, an average speedup of 13 has been achieved when compared to the sequential version. Additionally, this implementation has been compared with other state-of-the-art applications, outperforming them in terms of performance.-
dc.languageengen_US
dc.relationHyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080)en_US
dc.relation.ispartofConference on Design and Architectures for Signal and Image Processingen_US
dc.sourceConference on Design and Architectures for Signal and Image Processing, DASIP [ISSN 2164-9766], v. 2017-September, p. 1-6en_US
dc.subject3307 Tecnología electrónica-
dc.subject.otherHyperspectral imaging-
dc.subject.otherReal-time systems-
dc.subject.otherParallel processing-
dc.subject.otherleast squares approximations-
dc.subject.othergeophysical image processing-
dc.titleParallel implementation of an iterative PCA algorithm for hyperspectral images on a manycore platformen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceConference on Design and Architectures for Signal and Image Processing (DASIP)en_US
dc.identifier.doi10.1109/DASIP.2017.8122111en_US
dc.identifier.scopus85044279734-
dc.identifier.isi000426986300005-
dc.contributor.authorscopusid57192839213-
dc.contributor.authorscopusid57192829417-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid23005852100-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid36447485600-
dc.contributor.authorscopusid7006751614-
dc.description.lastpage6en_US
dc.description.firstpage1en_US
dc.relation.volume2017-Septemberen_US
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresosen_US
dc.contributor.daisngid3634522-
dc.contributor.daisngid3360488-
dc.contributor.daisngid2096372-
dc.contributor.daisngid1812298-
dc.contributor.daisngid1888017-
dc.contributor.daisngid506422-
dc.contributor.daisngid693458-
dc.contributor.daisngid384271-
dc.description.numberofpages6en_US
dc.identifier.eisbn978-1-5386-3534-6-
dc.utils.revision-
dc.contributor.wosstandardWOS:Lazcano, R-
dc.contributor.wosstandardWOS:Madronal, D-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Salvador, R-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Juarez, E-
dc.contributor.wosstandardWOS:Sanz, C-
dc.date.coverdateNoviembre 2017en_US
dc.identifier.conferenceidevents121092-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate27-09-2017-
crisitem.event.eventsenddate29-09-2017-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 17, 2024

Page view(s)

77
checked on Jul 20, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.