Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46808
Título: Parallel implementation of an iterative PCA algorithm for hyperspectral images on a manycore platform
Autores/as: Lazcano, R.
Madronal, D.
Fabelo, H. 
Ortega, S. 
Salvador, R.
Callico, G. M. 
Juarez, E.
Sanz, C.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hyperspectral imaging
Real-time systems
Parallel processing
least squares approximations
geophysical image processing
Fecha de publicación: 2017
Proyectos: Hyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080) 
Publicación seriada: Conference on Design and Architectures for Signal and Image Processing 
Conferencia: Conference on Design and Architectures for Signal and Image Processing (DASIP) 
Resumen: This paper presents a study of the par alle lization possibilities of a Non-Linear Iterative Partial Least Squares algorithm and its adaptation to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. The aim of this work is twofold: first, to test the behavior of iterative, complex algorithms in a manycore architecture; and, secondly, to achieve real-time processing of hyperspectral images, which is fixed by the image capture rate of the hyperspectral sensor. Real-time is a challenging objective, as hyperspectral images are composed of extensive volumes of spectral information. This issue is usually addressed by reducing the image size prior to the processing phase itself. Consequently, this paper proposes an analysis of the intrinsic parallelism of the algorithm and its subsequent implementation on a manycore architecture. As a result, an average speedup of 13 has been achieved when compared to the sequential version. Additionally, this implementation has been compared with other state-of-the-art applications, outperforming them in terms of performance.
URI: http://hdl.handle.net/10553/46808
ISBN: 9781538635346
ISSN: 2164-9766
DOI: 10.1109/DASIP.2017.8122111
Fuente: Conference on Design and Architectures for Signal and Image Processing, DASIP [ISSN 2164-9766], v. 2017-September, p. 1-6
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 29-dic-2024

Visitas

94
actualizado el 21-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.