Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46807
DC FieldValueLanguage
dc.contributor.authorLazcano, R.-
dc.contributor.authorMadroñal, D.-
dc.contributor.authorFabelo, H.-
dc.contributor.authorOrtega, S.-
dc.contributor.authorSalvador, R.-
dc.contributor.authorCallico, G. M.-
dc.contributor.authorJuarez, E.-
dc.contributor.authorSanz, C.-
dc.date.accessioned2018-11-23T08:24:55Z-
dc.date.available2018-11-23T08:24:55Z-
dc.date.issued2018-
dc.identifier.issn1939-8018-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/46807-
dc.description.abstractThis paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.-
dc.languageeng-
dc.publisher1939-8018-
dc.relation.ispartofJournal of Signal Processing Systems-
dc.sourceJournal of Signal Processing Systems[ISSN 1939-8018], p. 1-13-
dc.subject3307 Tecnología electrónica-
dc.subject.otherHyperspectral imaging-
dc.subject.otherMassively parallel processing-
dc.subject.otherReal-time processing-
dc.subject.otherParallel programming-
dc.subject.otherNIPALS-PCA-
dc.titleAdaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1007/s11265-018-1380-9-
dc.identifier.scopus85047148311-
dc.identifier.isi000472084000005-
dc.contributor.authorscopusid57192839213-
dc.contributor.authorscopusid57192829417-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid23005852100-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid36447485600-
dc.contributor.authorscopusid7006751614-
dc.identifier.eissn1939-8115-
dc.description.lastpage771-
dc.identifier.issue7-
dc.description.firstpage759-
dc.relation.volume91-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid3634522-
dc.contributor.daisngid3360488-
dc.contributor.daisngid2096372-
dc.contributor.daisngid1812298-
dc.contributor.daisngid29956157-
dc.contributor.daisngid506422-
dc.contributor.daisngid30553003-
dc.contributor.daisngid384271-
dc.description.numberofpages13-
dc.utils.revision-
dc.contributor.wosstandardWOS:Lazcano, R-
dc.contributor.wosstandardWOS:Madronal, D-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Salvador, R-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Juarez, E-
dc.contributor.wosstandardWOS:Sanz, C-
dc.date.coverdateJulio 2019-
dc.identifier.ulpgces
dc.description.sjr0,203
dc.description.jcr1,035
dc.description.sjrqQ3
dc.description.jcrqQ4
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

7
checked on Dec 8, 2024

Page view(s)

104
checked on Jun 29, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.