Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/46807
Title: | Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing | Authors: | Lazcano, R. Madroñal, D. Fabelo, H. Ortega, S. Salvador, R. Callico, G. M. Juarez, E. Sanz, C. |
UNESCO Clasification: | 3307 Tecnología electrónica | Keywords: | Hyperspectral imaging Massively parallel processing Real-time processing Parallel programming NIPALS-PCA |
Issue Date: | 2018 | Publisher: | 1939-8018 | Journal: | Journal of Signal Processing Systems | Abstract: | This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance. | URI: | http://hdl.handle.net/10553/46807 | ISSN: | 1939-8018 | DOI: | 10.1007/s11265-018-1380-9 | Source: | Journal of Signal Processing Systems[ISSN 1939-8018], p. 1-13 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
7
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
7
checked on Mar 30, 2025
Page view(s)
104
checked on Jun 29, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.