Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46806
Título: | Acceleration of brain cancer detection algorithms during surgery procedures using GPUs | Autores/as: | Torti, E. Fontanella, A. Florimbi, G. Leporati, F. Fabelo, H. Ortega, S. Callico, G. M. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Brain cancer detection European projects in digital systems design GPU SVMs |
Fecha de publicación: | 2018 | Editor/a: | 0141-9331 | Publicación seriada: | Microprocessors and Microsystems | Conferencia: | 20th Euromicro Conference on Digital System Design (DSD) | Resumen: | The HypErspectraL Imaging Cancer Detection (HELICoiD) European project aims at developing a methodology for tumor tissue classification through hyperspectral imaging (HSI) techniques. This paper describes the development of a parallel implementation of the Support Vector Machines (SVMs) algorithm employed for the classification of hyperspectral (HS) images of in vivo human brain tissue. SVM has demonstrated high accuracy in the supervised classification of biological tissues, and especially in the classification of human brain tumor. In this work, both the training and the classification stages of the SVMs were accelerated using Graphics Processing Units (GPUs). The acceleration of the training stage allows incorporating new samples during the surgical procedures to create new mathematical models of the classifier. Results show that the developed system is capable to perform efficient training and real-time compliant classification. | URI: | http://hdl.handle.net/10553/46806 | ISSN: | 0141-9331 | DOI: | 10.1016/j.micpro.2018.06.005 | Fuente: | Microprocessors and Microsystems[ISSN 0141-9331],v. 61, p. 171-178 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.