Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46806
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Torti, E. | en_US |
dc.contributor.author | Fontanella, A. | en_US |
dc.contributor.author | Florimbi, G. | en_US |
dc.contributor.author | Leporati, F. | en_US |
dc.contributor.author | Fabelo, H. | en_US |
dc.contributor.author | Ortega, S. | en_US |
dc.contributor.author | Callico, G. M. | en_US |
dc.date.accessioned | 2018-11-23T08:24:17Z | - |
dc.date.available | 2018-11-23T08:24:17Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.issn | 0141-9331 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/46806 | - |
dc.description.abstract | The HypErspectraL Imaging Cancer Detection (HELICoiD) European project aims at developing a methodology for tumor tissue classification through hyperspectral imaging (HSI) techniques. This paper describes the development of a parallel implementation of the Support Vector Machines (SVMs) algorithm employed for the classification of hyperspectral (HS) images of in vivo human brain tissue. SVM has demonstrated high accuracy in the supervised classification of biological tissues, and especially in the classification of human brain tumor. In this work, both the training and the classification stages of the SVMs were accelerated using Graphics Processing Units (GPUs). The acceleration of the training stage allows incorporating new samples during the surgical procedures to create new mathematical models of the classifier. Results show that the developed system is capable to perform efficient training and real-time compliant classification. | en_US |
dc.language | eng | en_US |
dc.publisher | 0141-9331 | |
dc.relation.ispartof | Microprocessors and Microsystems | en_US |
dc.source | Microprocessors and Microsystems[ISSN 0141-9331],v. 61, p. 171-178 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Brain cancer detection | en_US |
dc.subject.other | European projects in digital systems design | en_US |
dc.subject.other | GPU | en_US |
dc.subject.other | SVMs | en_US |
dc.title | Acceleration of brain cancer detection algorithms during surgery procedures using GPUs | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.relation.conference | 20th Euromicro Conference on Digital System Design (DSD) | |
dc.identifier.doi | 10.1016/j.micpro.2018.06.005 | |
dc.identifier.scopus | 85048884091 | - |
dc.identifier.isi | 000441486700015 | |
dc.contributor.authorscopusid | 56091390500 | - |
dc.contributor.authorscopusid | 57194765200 | - |
dc.contributor.authorscopusid | 57118346500 | - |
dc.contributor.authorscopusid | 55937698500 | - |
dc.contributor.authorscopusid | 56405568500 | - |
dc.contributor.authorscopusid | 57189334144 | - |
dc.contributor.authorscopusid | 56006321500 | - |
dc.description.lastpage | 178 | en_US |
dc.description.firstpage | 171 | en_US |
dc.relation.volume | 61 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 3356516 | |
dc.contributor.daisngid | 2802130 | |
dc.contributor.daisngid | 9760694 | |
dc.contributor.daisngid | 797863 | |
dc.contributor.daisngid | 2096372 | |
dc.contributor.daisngid | 1812298 | |
dc.contributor.daisngid | 506422 | |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Torti, E | |
dc.contributor.wosstandard | WOS:Fontanella, A | |
dc.contributor.wosstandard | WOS:Florimbi, G | |
dc.contributor.wosstandard | WOS:Leporati, F | |
dc.contributor.wosstandard | WOS:Fabelo, H | |
dc.contributor.wosstandard | WOS:Ortega, S | |
dc.contributor.wosstandard | WOS:Callico, GM | |
dc.date.coverdate | Septiembre 2018 | |
dc.identifier.conferenceid | events121094 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,264 | |
dc.description.jcr | 1,045 | |
dc.description.sjrq | Q3 | |
dc.description.jcrq | Q3 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 30-08-2017 | - |
crisitem.event.eventsenddate | 01-09-2017 | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
Colección: | Artículos |
Citas SCOPUSTM
18
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
17
actualizado el 17-nov-2024
Visitas
100
actualizado el 29-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.