Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46193
Title: Accurate depth dependent lens distortion models: an application to planar view scenarios
Authors: Alvarez, Luis 
Gómez, Luis 
Sendra, J. Rafael
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Keywords: 3D scenarios
Camera calibration
Depth dependence
Distortion model
Issue Date: 2011
Project: Modelización Matemática de Los Procesos de Calibración de Cámaras de Video. 
Journal: Journal of Mathematical Imaging and Vision 
Abstract: In order to calibrate cameras in an accurate manner, lens distortion models have to be included in the calibration procedure. Usually, the lens distortion models used in camera calibration depend on radial functions of image pixel coordinates. Such models are well-known, simple and can be estimated using just image information. However, these models do not take into account an important physical constraint of lens distortion phenomena, namely: the amount of lens distortion induced in an image point depends on the scene point depth with respect to the camera projection plane. In this paper we propose a new accurate depth dependent lens distortion model. To validate this approach, we apply the new lens distortion model to camera calibration in planar view scenarios (that is 3D scenarios where the objects of interest lie on a plane). We present promising experimental results on planar pattern images and on sport event scenarios. Nevertheless, although we emphasize the feasibility of the method for planar view scenarios, the proposed model is valid in general and can be used in any scenario where the point depth can be estimated.
URI: http://hdl.handle.net/10553/46193
ISSN: 0924-9907
DOI: 10.1007/s10851-010-0226-2
Source: Journal of Mathematical Imaging and Vision [ISSN 0924-9907], v. 39 (1), p. 75-85
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

25
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

21
checked on Dec 15, 2024

Page view(s)

127
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.