Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46193
Título: Accurate depth dependent lens distortion models: an application to planar view scenarios
Autores/as: Alvarez, Luis 
Gómez, Luis 
Sendra, J. Rafael
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: 3D scenarios
Camera calibration
Depth dependence
Distortion model
Fecha de publicación: 2011
Proyectos: Modelización Matemática de Los Procesos de Calibración de Cámaras de Video. 
Publicación seriada: Journal of Mathematical Imaging and Vision 
Resumen: In order to calibrate cameras in an accurate manner, lens distortion models have to be included in the calibration procedure. Usually, the lens distortion models used in camera calibration depend on radial functions of image pixel coordinates. Such models are well-known, simple and can be estimated using just image information. However, these models do not take into account an important physical constraint of lens distortion phenomena, namely: the amount of lens distortion induced in an image point depends on the scene point depth with respect to the camera projection plane. In this paper we propose a new accurate depth dependent lens distortion model. To validate this approach, we apply the new lens distortion model to camera calibration in planar view scenarios (that is 3D scenarios where the objects of interest lie on a plane). We present promising experimental results on planar pattern images and on sport event scenarios. Nevertheless, although we emphasize the feasibility of the method for planar view scenarios, the proposed model is valid in general and can be used in any scenario where the point depth can be estimated.
URI: http://hdl.handle.net/10553/46193
ISSN: 0924-9907
DOI: 10.1007/s10851-010-0226-2
Fuente: Journal of Mathematical Imaging and Vision [ISSN 0924-9907], v. 39 (1), p. 75-85
Colección:Artículos
Vista completa

Citas SCOPUSTM   

25
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 10-nov-2024

Visitas

127
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.