Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46181
Título: Exploring the space of abstract textures by principles and random sampling
Autores/as: Alvarez, Luis 
Gousseau, Yann
Morel, Jean Michel
Salgado, Agustín
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Abstract painting
Dead leaves model
Gestalt theory
Graphic design
Texture synthesis
Fecha de publicación: 2015
Publicación seriada: Journal of Mathematical Imaging and Vision 
Resumen: Exemplar-based texture synthesis methods try to emulate textures observed in our visual world. Yet the field of all possible textures (natural or not) has been little explored. Indeed, existing abstract synthesis methods focus on a single generation rule and generate a rather limited set of textures. This limitation can be overcome by combining randomly various generation principles and rule parameters. Doing so gives access to a vast and still unexplored set of possible images. In this paper, we introduce an image sampling method combining the main painting techniques of abstract art. This sampler synthesizes what we call multi-layered textures. The underlying image model extends three abstract image synthesis models: the dead leaves model, the spot noise, and fractal generators. By respecting minimal self-similarity rules keeping Gestalt theory grouping principles at each texture layer, the abstract textures remain understandable to human perception. The complexity of the generated textures derives from the systematic and randomized use of shape interaction principles taken from abstract art such as occlusion, transparency, exclusion, inclusion, and tessellation.
URI: http://hdl.handle.net/10553/46181
ISSN: 0924-9907
DOI: 10.1007/s10851-015-0582-z
Fuente: Journal of Mathematical Imaging and Vision [ISSN 0924-9907], v. 53 (3), p. 332-345
Colección:Artículos
Vista completa

Citas SCOPUSTM   

5
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 15-dic-2024

Visitas

131
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.