Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46181
Título: | Exploring the space of abstract textures by principles and random sampling | Autores/as: | Alvarez, Luis Gousseau, Yann Morel, Jean Michel Salgado, Agustín |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 120326 Simulación |
Palabras clave: | Abstract painting Dead leaves model Gestalt theory Graphic design Texture synthesis |
Fecha de publicación: | 2015 | Publicación seriada: | Journal of Mathematical Imaging and Vision | Resumen: | Exemplar-based texture synthesis methods try to emulate textures observed in our visual world. Yet the field of all possible textures (natural or not) has been little explored. Indeed, existing abstract synthesis methods focus on a single generation rule and generate a rather limited set of textures. This limitation can be overcome by combining randomly various generation principles and rule parameters. Doing so gives access to a vast and still unexplored set of possible images. In this paper, we introduce an image sampling method combining the main painting techniques of abstract art. This sampler synthesizes what we call multi-layered textures. The underlying image model extends three abstract image synthesis models: the dead leaves model, the spot noise, and fractal generators. By respecting minimal self-similarity rules keeping Gestalt theory grouping principles at each texture layer, the abstract textures remain understandable to human perception. The complexity of the generated textures derives from the systematic and randomized use of shape interaction principles taken from abstract art such as occlusion, transparency, exclusion, inclusion, and tessellation. | URI: | http://hdl.handle.net/10553/46181 | ISSN: | 0924-9907 | DOI: | 10.1007/s10851-015-0582-z | Fuente: | Journal of Mathematical Imaging and Vision [ISSN 0924-9907], v. 53 (3), p. 332-345 |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 15-dic-2024
Visitas
131
actualizado el 12-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.