Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46130
DC FieldValueLanguage
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorPal, Umapadaen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorBlumenstein, Michaelen_US
dc.contributor.authorStepec, Dejanen_US
dc.contributor.authorRot, Peteren_US
dc.contributor.authorEmersic, Zigaen_US
dc.contributor.authorPeer, Peteren_US
dc.contributor.authorStruc, Vitomiren_US
dc.date.accessioned2018-11-23T01:39:53Z-
dc.date.available2018-11-23T01:39:53Z-
dc.date.issued2018en_US
dc.identifier.isbn9781538642856en_US
dc.identifier.issn2376-4201en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/46130-
dc.description.abstractThis paper summarises the results of the Sclera Segmentation Benchmarking Competition (SSBC 2018). It was organised in the context of the 11th IAPR International Conference on Biometrics (ICB 2018). The aim of this competition was to record the developments on sclera segmentation in the cross-sensor environment (sclera trait captured using multiple acquiring sensors). Additionally, the competition also aimed to gain the attention of researchers on this subject of research. For the purpose of benchmarking, we have developed two datasets of sclera images captured using different sensors. The first dataset was collected using a DSLR camera and the second one was collected using a mobile phone camera. The first dataset is the Multi-Angle Sclera Dataset (MASD version 1), which was used in the context of the previous versions of sclera segmentation competitions. The images in the second dataset were captured using .a mobile phone rear camera of 8-megapixel. As baseline manual segmentation mask of the sclera images from both the datasets were developed. Precision and recall-based statistical measures were employed to evaluate the effectiveness of the submitted segmentation technique and to rank them. Six algorithms were submitted towards the segmentation task. This paper analyses the results produced by these algorithms/system and defines a way forward for this subject of research. Both the datasets along with some of the accompanying ground truth/baseline mask will be freely available for research purposes upon request to authors by email.en_US
dc.languageengen_US
dc.relation.ispartofInternational Conference on Biometricsen_US
dc.source2018 International Conference On Biometrics (Icb) [ISSN 2376-4201], p. 303-308, (2018)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherIris recognitionen_US
dc.subject.otherImage segmentationen_US
dc.subject.otherBenchmark testingen_US
dc.subject.otherTask analysisen_US
dc.subject.otherCamerasen_US
dc.subject.otherScleraen_US
dc.subject.otherSegmentationen_US
dc.titleSSBC 2018: Sclera segmentation benchmarking competitionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference11th IAPR International Conference on Biometrics, ICB 2018en_US
dc.identifier.doi10.1109/ICB2018.2018.00053en_US
dc.identifier.scopus85050981395-
dc.identifier.isi000449428100042-
dc.contributor.authorscopusid7403596707-
dc.contributor.authorscopusid57214490551-
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid56243577200-
dc.contributor.authorscopusid57195223615-
dc.contributor.authorscopusid57201851285-
dc.contributor.authorscopusid56097253100-
dc.contributor.authorscopusid7003277146-
dc.contributor.authorscopusid17347474600-
dc.description.lastpage308en_US
dc.description.firstpage303en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid3164655-
dc.contributor.daisngid25227-
dc.contributor.daisngid233119-
dc.contributor.daisngid110880-
dc.contributor.daisngid10196273-
dc.contributor.daisngid30961988-
dc.contributor.daisngid4337700-
dc.contributor.daisngid1180360-
dc.contributor.daisngid667462-
dc.description.numberofpages6en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Das, A-
dc.contributor.wosstandardWOS:Pal, U-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.contributor.wosstandardWOS:Blumenstein, M-
dc.contributor.wosstandardWOS:Stepec, D-
dc.contributor.wosstandardWOS:Rot, P-
dc.contributor.wosstandardWOS:Emersic, Z-
dc.contributor.wosstandardWOS:Peer, P-
dc.contributor.wosstandardWOS:Struc, V-
dc.date.coverdateJulio 2018en_US
dc.identifier.conferenceidevents121121-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate20-02-2018-
crisitem.event.eventsenddate23-02-2018-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

25
checked on Dec 1, 2024

WEB OF SCIENCETM
Citations

20
checked on Nov 24, 2024

Page view(s)

85
checked on Mar 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.