Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46130
Título: | SSBC 2018: Sclera segmentation benchmarking competition | Autores/as: | Das, Abhijit Pal, Umapada Ferrer, Miguel A. Blumenstein, Michael Stepec, Dejan Rot, Peter Emersic, Ziga Peer, Peter Struc, Vitomir |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Iris recognition Image segmentation Benchmark testing Task analysis Cameras, et al. |
Fecha de publicación: | 2018 | Publicación seriada: | International Conference on Biometrics | Conferencia: | 11th IAPR International Conference on Biometrics, ICB 2018 | Resumen: | This paper summarises the results of the Sclera Segmentation Benchmarking Competition (SSBC 2018). It was organised in the context of the 11th IAPR International Conference on Biometrics (ICB 2018). The aim of this competition was to record the developments on sclera segmentation in the cross-sensor environment (sclera trait captured using multiple acquiring sensors). Additionally, the competition also aimed to gain the attention of researchers on this subject of research. For the purpose of benchmarking, we have developed two datasets of sclera images captured using different sensors. The first dataset was collected using a DSLR camera and the second one was collected using a mobile phone camera. The first dataset is the Multi-Angle Sclera Dataset (MASD version 1), which was used in the context of the previous versions of sclera segmentation competitions. The images in the second dataset were captured using .a mobile phone rear camera of 8-megapixel. As baseline manual segmentation mask of the sclera images from both the datasets were developed. Precision and recall-based statistical measures were employed to evaluate the effectiveness of the submitted segmentation technique and to rank them. Six algorithms were submitted towards the segmentation task. This paper analyses the results produced by these algorithms/system and defines a way forward for this subject of research. Both the datasets along with some of the accompanying ground truth/baseline mask will be freely available for research purposes upon request to authors by email. | URI: | http://hdl.handle.net/10553/46130 | ISBN: | 9781538642856 | ISSN: | 2376-4201 | DOI: | 10.1109/ICB2018.2018.00053 | Fuente: | 2018 International Conference On Biometrics (Icb) [ISSN 2376-4201], p. 303-308, (2018) |
Colección: | Actas de congresos |
Citas SCOPUSTM
25
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
20
actualizado el 24-nov-2024
Visitas
85
actualizado el 09-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.