Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45879
Título: Dempster-shafer theory based ship-ship collision probability modelling
Autores/as: Talavera Ortiz, Alejandro 
Aguasca Colomo, Ricardo 
Galván González, Blas J.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Maritime traffic safety
Dempster-Shafer Theory
collision probability
Data AIS
Fecha de publicación: 2013
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 14th International Conference on Computer Aided Systems Theory (EUROCAST) 
14th International Conference on Computer Aided Systems Theory, EUROCAST 2013 
Resumen: The methodology proposed in this paper considers the uncertainty present in modeling the probability of collision between ships on a route. The proposal allows representing and quantifying uncertainty, and ensures rigorous propagation of this uncertainty from the input variables to the output variable. This proposal complements the analysis of risk and helps the decision maker to know the degree of confidence associated with the results of the analysis. Pedersen’s model has been selected to estimate the probability of collision, using the information provided by the AIS, and Dempster-Shafer Theory has been selected for the treatment of uncertainty. This methodology has been applied to maritime traffic in the Canary Islands and has been validated using the Kullback-Leibler divergence. The results are consistent with those obtained with the software IWRAP recommended by IALA.
URI: http://hdl.handle.net/10553/45879
ISBN: 9783642538612
ISSN: 0302-9743
DOI: 10.1007/978-3-642-53862-9-9
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 8112 LNCS, p. 63-70
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 25-feb-2024

Visitas

83
actualizado el 20-may-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.