Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/45879
Título: | Dempster-shafer theory based ship-ship collision probability modelling | Autores/as: | Talavera Ortiz, Alejandro Aguasca Colomo, Ricardo Galván González, Blas J. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Maritime traffic safety Dempster-Shafer Theory collision probability Data AIS |
Fecha de publicación: | 2013 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 14th International Conference on Computer Aided Systems Theory (EUROCAST) 14th International Conference on Computer Aided Systems Theory, EUROCAST 2013 |
Resumen: | The methodology proposed in this paper considers the uncertainty present in modeling the probability of collision between ships on a route. The proposal allows representing and quantifying uncertainty, and ensures rigorous propagation of this uncertainty from the input variables to the output variable. This proposal complements the analysis of risk and helps the decision maker to know the degree of confidence associated with the results of the analysis. Pedersen’s model has been selected to estimate the probability of collision, using the information provided by the AIS, and Dempster-Shafer Theory has been selected for the treatment of uncertainty. This methodology has been applied to maritime traffic in the Canary Islands and has been validated using the Kullback-Leibler divergence. The results are consistent with those obtained with the software IWRAP recommended by IALA. | URI: | http://hdl.handle.net/10553/45879 | ISBN: | 9783642538612 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-53862-9-9 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 8112 LNCS, p. 63-70 |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
83
actualizado el 20-may-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.