Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45744
Título: Line detection in images showing significant lens distortion and application to distortion correction
Autores/as: Alemán-Flores, Miguel 
Alvarez, Luis 
Gomez, Luis 
Santana-Cedrés, Daniel 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Line detection
Lens distortion
Hough transform
Fecha de publicación: 2014
Proyectos: Modelización Matemática de Los Procesos de Calibración de Cámaras de Video. 
Publicación seriada: Pattern Recognition Letters 
Resumen: Lines are one of the basic primitives used by the perceptual system to analyze and interpret a scene. Therefore, line detection is a very important issue for the robustness and flexibility of Computer Vision systems. However, in the case of images showing a significant lens distortion, standard line detection methods fail because lines are not straight. In this paper we present a new technique to deal with this problem: we propose to extend the usual Hough representation by introducing a new parameter which corresponds to the lens distortion, in such a way that the search space is a three-dimensional space, which includes orientation, distance to the origin and also distortion. Using the collection of distorted lines which have been recovered, we are able to estimate the lens distortion, remove it and create a new distortion-free image by using a two-parameter lens distortion model. We present some experiments in a variety of images which show the ability of the proposed approach to extract lines in images showing a significant lens distortion.
URI: http://hdl.handle.net/10553/45744
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2013.06.020
Fuente: Pattern Recognition Letters [ISSN 0167-8655], v. 36, p. 261-271
Colección:Artículos
Adobe PDF (878,7 kB)
Vista completa

Citas SCOPUSTM   

22
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

22
actualizado el 15-dic-2024

Visitas

153
actualizado el 31-oct-2024

Descargas

57
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.