Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45485
Título: Towards the design of an offline signature verifier based on a small number of genuine samples for training
Autores/as: Bouamra, Walid
Djeddi, Chawki
Nini, Brahim
Diaz, Moises 
Siddiqi, Imran
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Offline signature verification
Run-length distribution features
Single Reference Signature System
One-Class Support Vector Machine
Fecha de publicación: 2018
Publicación seriada: Expert Systems with Applications 
Resumen: Signature verification has remained one of the most widely accepted modalities to authenticate an individual primarily due to the ease with which signatures can be acquired. Being a behavioral biometric modality, the intra-personal variability in signatures is rather high and extremely unpredictable. This leads to relatively higher error rates as compared to those realized by other biometric traits like iris or fingerprints. To address these issues, this study investigates run-length distribution features for designing an effective offline signature verification system. The objective of this research is to enhance the capabilities of automatic signature verification systems allowing them to work in a realistic fashion by training them using positive specimens (genuine signatures of each person) only without access to any forged samples. Classification is carried out using One-Class Support Vector Machine (OC-SVM) while the evaluations are performed using GPDS960 database, one of the largest offline signature corpus developed till date. Experimental results show the potential of the proposed system for detection of skilled forgeries, especially for the challenging case of a single reference signature in the training set.
URI: http://hdl.handle.net/10553/45485
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2018.04.035
Fuente: Expert Systems with Applications [ISSN 0957-4174], v. 107, p. 182-195, (Octubre 2018)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

42
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

33
actualizado el 17-nov-2024

Visitas

68
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.