Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45485
Campo DC Valoridioma
dc.contributor.authorBouamra, Waliden_US
dc.contributor.authorDjeddi, Chawkien_US
dc.contributor.authorNini, Brahimen_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorSiddiqi, Imranen_US
dc.date.accessioned2018-11-22T10:13:06Z-
dc.date.available2018-11-22T10:13:06Z-
dc.date.issued2018en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10553/45485-
dc.description.abstractSignature verification has remained one of the most widely accepted modalities to authenticate an individual primarily due to the ease with which signatures can be acquired. Being a behavioral biometric modality, the intra-personal variability in signatures is rather high and extremely unpredictable. This leads to relatively higher error rates as compared to those realized by other biometric traits like iris or fingerprints. To address these issues, this study investigates run-length distribution features for designing an effective offline signature verification system. The objective of this research is to enhance the capabilities of automatic signature verification systems allowing them to work in a realistic fashion by training them using positive specimens (genuine signatures of each person) only without access to any forged samples. Classification is carried out using One-Class Support Vector Machine (OC-SVM) while the evaluations are performed using GPDS960 database, one of the largest offline signature corpus developed till date. Experimental results show the potential of the proposed system for detection of skilled forgeries, especially for the challenging case of a single reference signature in the training set.en_US
dc.languageengen_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.sourceExpert Systems with Applications [ISSN 0957-4174], v. 107, p. 182-195, (Octubre 2018)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherOffline signature verificationen_US
dc.subject.otherRun-length distribution featuresen_US
dc.subject.otherSingle Reference Signature Systemen_US
dc.subject.otherOne-Class Support Vector Machineen_US
dc.titleTowards the design of an offline signature verifier based on a small number of genuine samples for trainingen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2018.04.035en_US
dc.identifier.scopus85046472936-
dc.contributor.authorscopusid57193773041-
dc.contributor.authorscopusid55078188200-
dc.contributor.authorscopusid9333872000-
dc.contributor.authorscopusid36760594500-
dc.contributor.authorscopusid24768045700-
dc.description.lastpage195en_US
dc.description.firstpage182en_US
dc.relation.volume107en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2018en_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,19
dc.description.jcr4,292
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

42
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

33
actualizado el 17-nov-2024

Visitas

68
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.