Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/45485
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bouamra, Walid | en_US |
dc.contributor.author | Djeddi, Chawki | en_US |
dc.contributor.author | Nini, Brahim | en_US |
dc.contributor.author | Diaz, Moises | en_US |
dc.contributor.author | Siddiqi, Imran | en_US |
dc.date.accessioned | 2018-11-22T10:13:06Z | - |
dc.date.available | 2018-11-22T10:13:06Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.issn | 0957-4174 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/45485 | - |
dc.description.abstract | Signature verification has remained one of the most widely accepted modalities to authenticate an individual primarily due to the ease with which signatures can be acquired. Being a behavioral biometric modality, the intra-personal variability in signatures is rather high and extremely unpredictable. This leads to relatively higher error rates as compared to those realized by other biometric traits like iris or fingerprints. To address these issues, this study investigates run-length distribution features for designing an effective offline signature verification system. The objective of this research is to enhance the capabilities of automatic signature verification systems allowing them to work in a realistic fashion by training them using positive specimens (genuine signatures of each person) only without access to any forged samples. Classification is carried out using One-Class Support Vector Machine (OC-SVM) while the evaluations are performed using GPDS960 database, one of the largest offline signature corpus developed till date. Experimental results show the potential of the proposed system for detection of skilled forgeries, especially for the challenging case of a single reference signature in the training set. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Expert Systems with Applications | en_US |
dc.source | Expert Systems with Applications [ISSN 0957-4174], v. 107, p. 182-195, (Octubre 2018) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Offline signature verification | en_US |
dc.subject.other | Run-length distribution features | en_US |
dc.subject.other | Single Reference Signature System | en_US |
dc.subject.other | One-Class Support Vector Machine | en_US |
dc.title | Towards the design of an offline signature verifier based on a small number of genuine samples for training | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.eswa.2018.04.035 | en_US |
dc.identifier.scopus | 85046472936 | - |
dc.contributor.authorscopusid | 57193773041 | - |
dc.contributor.authorscopusid | 55078188200 | - |
dc.contributor.authorscopusid | 9333872000 | - |
dc.contributor.authorscopusid | 36760594500 | - |
dc.contributor.authorscopusid | 24768045700 | - |
dc.description.lastpage | 195 | en_US |
dc.description.firstpage | 182 | en_US |
dc.relation.volume | 107 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 14 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Octubre 2018 | en_US |
dc.identifier.ulpgc | No | en_US |
dc.contributor.buulpgc | BU-BAS | en_US |
dc.description.sjr | 1,19 | |
dc.description.jcr | 4,292 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Física | - |
crisitem.author.orcid | 0000-0003-3878-3867 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Díaz Cabrera, Moisés | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
42
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
33
checked on Nov 17, 2024
Page view(s)
68
checked on May 11, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.