Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/45450
Title: Matched pairs of Leibniz algebroids, Nambu-Jacobi structures and modular class
Authors: Ibañez, Raúl
Lopez, Belén 
Marrero, Juan C.
Padron, Edith
UNESCO Clasification: 12 Matemáticas
Keywords: Lie algebroids
Lie algebroid
Generalized complex
Issue Date: 2001
Journal: Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
Abstract: The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu-Jacobi structure of order n, n > 2, over a manifold M defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle boolean AND (n-1) (T* M) + boolean AND (n-2) (T*M) --> M is a Leibniz algebroid. Finally, if M is orientable, the modular class of M is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.
URI: http://hdl.handle.net/10553/45450
ISSN: 0764-4442
DOI: 10.1016/S0764-4442(01)02150-4
Source: Comptes Rendus de l'Academie des Sciences - Series I: Mathematics [ISSN 0764-4442], v. 333 (9) p. 861-866
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.