Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/45450
Title: Matched pairs of Leibniz algebroids, Nambu-Jacobi structures and modular class
Authors: Ibañez, Raúl
Lopez, Belén 
Marrero, Juan C.
Padron, Edith
UNESCO Clasification: 12 Matemáticas
Keywords: Lie algebroids
Lie algebroid
Generalized complex
Issue Date: 2001
Journal: Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
Abstract: The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu-Jacobi structure of order n, n > 2, over a manifold M defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle boolean AND (n-1) (T* M) + boolean AND (n-2) (T*M) --> M is a Leibniz algebroid. Finally, if M is orientable, the modular class of M is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.
URI: http://hdl.handle.net/10553/45450
ISSN: 0764-4442
DOI: 10.1016/S0764-4442(01)02150-4
Source: Comptes Rendus de l'Academie des Sciences - Series I: Mathematics [ISSN 0764-4442], v. 333 (9) p. 861-866
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

4
checked on Sep 26, 2021

WEB OF SCIENCETM
Citations

4
checked on Sep 26, 2021

Page view(s)

48
checked on Jul 10, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.