Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44277
Campo DC Valoridioma
dc.contributor.authorFourati, Rahmaen_US
dc.contributor.authorAmmar, Boudouren_US
dc.contributor.authorAouiti, Chaoukien_US
dc.contributor.authorSanchez-Medina, Javieren_US
dc.contributor.authorAlimi, Adel M.en_US
dc.date.accessioned2018-11-21T21:38:15Z-
dc.date.available2018-11-21T21:38:15Z-
dc.date.issued2017en_US
dc.identifier.isbn978-3-319-70095-3en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/44277-
dc.description.abstractReservoir Computing (RC) is a paradigm for efficient training of Recurrent Neural Networks (RNNs). The Echo State Network (ESN), a type of RC paradigm, has been widely used for time series forecasting. Whereas, few works exist on classification with ESN. In this paper, we shed light on the use of ESN for pattern recognition problem, i.e. emotion recognition from Electroencephalogram (EEG). We show that the reservoir with its recurrence is able to perform the feature extraction step directly from the EEG raw. Such kind of recurrence rich of nonlinearities allows the projection of the input data into a high dimensional state space. It is well known that the ESN fails due to the poor choices of its initialization. Nevertheless, we show that pretraining the ESN with the Intrinsic Plasticity (IP) rule remedies the shortcoming of randomly initialization. To validate our approach, we tested our system on the benchmark DEAP containing EEG signals of 32 subjects and the results were promising.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceNeural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, v. 10635 LNCS, p. 718-727en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherEcho state networken_US
dc.subject.otherIntrinsic plasticityen_US
dc.subject.otherFeature extractionen_US
dc.subject.otherClassificationen_US
dc.subject.otherElectroencephalogramen_US
dc.subject.otherEmotion recognitionen_US
dc.titleOptimized echo state network with intrinsic plasticity for EEG-based emotion recognitionen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typebookParten_US
dc.relation.conference24th International Conference on Neural Information Processing, (ICONIP 2017)en_US
dc.identifier.doi10.1007/978-3-319-70096-0_73en_US
dc.identifier.scopus85035138160-
dc.contributor.authorscopusid44961198800-
dc.contributor.authorscopusid23974208100-
dc.contributor.authorscopusid6507534631-
dc.contributor.authorscopusid26421466600-
dc.contributor.authorscopusid7003687617-
dc.identifier.eissn1611-3349-
dc.description.lastpage727en_US
dc.description.firstpage718en_US
dc.relation.volume10635en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.identifier.eisbn978-3-319-70096-0-
dc.utils.revisionen_US
dc.date.coverdateEnero 2017en_US
dc.identifier.supplement0302-9743-
dc.identifier.conferenceidevents121619-
dc.identifier.ulpgcen_US
dc.description.sjr0,295
dc.description.sjrqQ2
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate14-11-2017-
crisitem.event.eventsenddate18-11-2017-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Colección:Capítulo de libro
Vista resumida

Citas SCOPUSTM   

28
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 24-nov-2024

Visitas

150
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.