Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/44277
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fourati, Rahma | en_US |
dc.contributor.author | Ammar, Boudour | en_US |
dc.contributor.author | Aouiti, Chaouki | en_US |
dc.contributor.author | Sanchez-Medina, Javier | en_US |
dc.contributor.author | Alimi, Adel M. | en_US |
dc.date.accessioned | 2018-11-21T21:38:15Z | - |
dc.date.available | 2018-11-21T21:38:15Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 978-3-319-70095-3 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/44277 | - |
dc.description.abstract | Reservoir Computing (RC) is a paradigm for efficient training of Recurrent Neural Networks (RNNs). The Echo State Network (ESN), a type of RC paradigm, has been widely used for time series forecasting. Whereas, few works exist on classification with ESN. In this paper, we shed light on the use of ESN for pattern recognition problem, i.e. emotion recognition from Electroencephalogram (EEG). We show that the reservoir with its recurrence is able to perform the feature extraction step directly from the EEG raw. Such kind of recurrence rich of nonlinearities allows the projection of the input data into a high dimensional state space. It is well known that the ESN fails due to the poor choices of its initialization. Nevertheless, we show that pretraining the ESN with the Intrinsic Plasticity (IP) rule remedies the shortcoming of randomly initialization. To validate our approach, we tested our system on the benchmark DEAP containing EEG signals of 32 subjects and the results were promising. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, v. 10635 LNCS, p. 718-727 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Echo state network | en_US |
dc.subject.other | Intrinsic plasticity | en_US |
dc.subject.other | Feature extraction | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Electroencephalogram | en_US |
dc.subject.other | Emotion recognition | en_US |
dc.title | Optimized echo state network with intrinsic plasticity for EEG-based emotion recognition | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | bookPart | en_US |
dc.relation.conference | 24th International Conference on Neural Information Processing, (ICONIP 2017) | en_US |
dc.identifier.doi | 10.1007/978-3-319-70096-0_73 | en_US |
dc.identifier.scopus | 85035138160 | - |
dc.contributor.authorscopusid | 44961198800 | - |
dc.contributor.authorscopusid | 23974208100 | - |
dc.contributor.authorscopusid | 6507534631 | - |
dc.contributor.authorscopusid | 26421466600 | - |
dc.contributor.authorscopusid | 7003687617 | - |
dc.identifier.eissn | 1611-3349 | - |
dc.description.lastpage | 727 | en_US |
dc.description.firstpage | 718 | en_US |
dc.relation.volume | 10635 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.identifier.eisbn | 978-3-319-70096-0 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2017 | en_US |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.conferenceid | events121619 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.description.sjr | 0,295 | |
dc.description.sjrq | Q2 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 14-11-2017 | - |
crisitem.event.eventsenddate | 18-11-2017 | - |
crisitem.author.dept | GIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2530-3182 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Sánchez Medina, Javier Jesús | - |
Appears in Collections: | Capítulo de libro |
SCOPUSTM
Citations
28
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
27
checked on Mar 30, 2025
Page view(s)
179
checked on Jan 18, 2025
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.