Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44090
Campo DC Valoridioma
dc.contributor.authorAlonso, Jesús B.en_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorHenriquez, P.en_US
dc.contributor.otherTravieso-Gonzalez, Carlos M.-
dc.contributor.otherFerrer, Miguel A-
dc.contributor.otherAlonso-Hernandez, Jesus B.-
dc.contributor.otherHenriquez Rodriguez, Patricia-
dc.date.accessioned2018-11-21T20:09:08Z-
dc.date.available2018-11-21T20:09:08Z-
dc.date.issued2007en_US
dc.identifier.isbn9780889866935en_US
dc.identifier.urihttp://hdl.handle.net/10553/44090-
dc.description.abstractin this paper nonlinear chaotic features have been obtained from audio signals of different kinds of electric machines as a first step in order to develop a personal computer (PC) based artificial intelligence system for the fault identification and diagnosis of electric machines. These techniques can be applied in fault identification and diagnosis in industrial scenarios by mean of expert systems. Different nonlinear features (based on chaos theory) to detect changes of the audio signal were studied: maximal Lyapunov exponent, correlation dimension and correlation entropy. We also studied related measurement such as the time delay and the value of the first minimum of the mutual information function, the first zero of the autocorrelation function and Shannon entropy. We used different recordings from different scenarios (PC fans, an iron cutter and an electric drill).
dc.languagespaen_US
dc.relation.ispartofProceedings of the 11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007en_US
dc.sourceProceedings of the 11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007, p. 114-119en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherChaos, Lyapunov exponents, Correlation dimension, Correlation entropy and expert systemsen_US
dc.titleAdvances in automatic detection of failures in electric machines using audio signalsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference11th IASTED International Conference on Artificial Intelligence and Soft Computing
dc.relation.conference11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007
dc.identifier.scopus54949089622-
dc.identifier.isi000250957100019-
dcterms.isPartOfProcedings Of The 11Th Iasted International Conference On Artificial Intelligence And Soft Computing-
dcterms.sourceProcedings Of The 11Th Iasted International Conference On Artificial Intelligence And Soft Computing, p. 114-119-
dc.contributor.authorscopusid57027894900-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid55636321172-
dc.description.lastpage119-
dc.description.firstpage114-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000250957100019-
dc.contributor.daisngid1432987-
dc.contributor.daisngid418703-
dc.contributor.daisngid265761-
dc.contributor.daisngid233119-
dc.identifier.investigatorRIDN-5967-2014-
dc.identifier.investigatorRIDL-3863-2013-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.identifier.externalWOS:000250957100019-
dc.contributor.wosstandardWOS:Henriquez, P
dc.contributor.wosstandardWOS:Alonso, JB
dc.contributor.wosstandardWOS:Travieso, CM
dc.contributor.wosstandardWOS:Ferrer, MA
dc.date.coverdateDiciembre 2007
dc.identifier.conferenceidevents120584
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate29-08-2007-
crisitem.event.eventsstartdate29-08-2007-
crisitem.event.eventsenddate31-08-2007-
crisitem.event.eventsenddate31-08-2007-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-1170-2820-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameHenríquez Sánchez, Patricia-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 25-feb-2024

Visitas

88
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.